# MixNet **Repository Path**: dlml2/MixNet ## Basic Information - **Project Name**: MixNet - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-12-20 - **Last Updated**: 2024-12-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MixNet This is the official code for MixNet: Toward Accurate Detection of Challenging Scene Text in the Wild # docker environment [Click Here]() # Evaluation Result on Benchmark |Datasets | Prec. (%)| Recall (%) | F1-score (%) | weight (.pth) |-----|--------|--------------|----------|-------------------| |Total-Text|93.0|88.1|90.5|[model]()| |MSRA-TD500|90.7|88.1|89.4|[model]()| |ICDAR-ArT|83.0|76.7|79.7|[model]()| |CTW1500 |91.4|88.3|89.8|[model]()| # Evaluation Result on CTW1500 This section elucidates the performance evaluation on the CTW1500 dataset. When utilizing the [TIoU-metric-python3]() scoring code, our model's scores are as presented below: |Datasets | Prec. (%)| Recall (%) | F1-score (%) | |-----|--------|--------------|----------| |CTW1500 |90.3|84.8|87.5| However, upon inputting MixNet's output into the [DPText-DETR]()'s calculation program, the ensuing results differ: |Datasets | Prec. (%)| Recall (%) | F1-score (%) | |-----|--------|--------------|----------| |CTW1500 |91.4|88.3|89.8| I'm not sure why the data is inconsistent. Therefore, I've provided the scores obtained from both calculations for reference. # Eval ```bash # Total-Text python3 eval_mixNet.py --net FSNet_M --scale 1 --exp_name Totaltext_mid --checkepoch 622 --test_size 640 1024 --dis_threshold 0.3 --cls_threshold 0.85 --mid True # CTW1500 python3 eval_mixNet.py --net FSNet_hor --scale 1 --exp_name Ctw1500 --checkepoch 925 --test_size 640 1024 --dis_threshold 0.3 --cls_threshold 0.85 # MSRA-TD500 python3 eval_mixNet.py --net FSNet_M --scale 1 --exp_name TD500HUST_mid --checkepoch 284 --test_size 640 1024 --dis_threshold 0.3 --cls_threshold 0.85 --mid True # ArT python3 eval_mixNet.py --net FSNet_M --scale 1 --exp_name ArT_mid --checkepoch 160 --test_size 960 2880 --dis_threshold 0.4 --cls_threshold 0.8 --mid True ``` # Acknowledgement This code has been modified based on the foundation laid by [TextBPN++]().
We use code from [Connected_components_PyTorch]() as post-processing.
Thanks for their great work!