# mindspore_lite_samples **Repository Path**: don-quixote-der/mindspore_lite_samples ## Basic Information - **Project Name**: mindspore_lite_samples - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-02 - **Last Updated**: 2023-11-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

Mindspore_lite安装使用说明

## 安装 在这下载:https://www.mindspore.cn/lite/docs/zh-CN/r2.2/use/downloads.html 在昇腾环境上 注意mindspore_lite与CANN的对应关系 ### C++安装 下载并解压 C++,需要配置LD_LIBRARY_PATH ```shell wget https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/lite/release/linux/aarch64/cloud_fusion/python37/mindspore-lite-2.2.0-linux-aarch64.tar.gz tar -zxvf mindspore-lite-2.2.0-linux-aarch64.tar.gz ``` ### Python安装 下载python使用包 注意下载对应CPU架构与python版本 ```shell wget https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/lite/release/linux/aarch64/cloud_fusion/python39/mindspore_lite-2.2.0-cp39-cp39-linux_aarch64.whl pip install mindspore_lite-2.2.0-cp39-cp39-linux_aarch64.whl ``` ## 推理 ### Python 快速入门例子 云端推理参考 https://www.mindspore.cn/lite/docs/zh-CN/r2.2/use/cloud_infer/runtime_python.html python快速入门(CPU推理) 下载模型与数据 ```shell mkdir model wget https://download.mindspore.cn/model_zoo/official/lite/quick_start/mobilenetv2.mindir wget https://download.mindspore.cn/model_zoo/official/lite/quick_start/input.bin ``` 执行quick_demo下的 quick_start_cloud_infer_python.py python quick_start_cloud_infer_python.py ### 转换ONNX demo 下载转换工具 wget https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/lite/release/linux/aarch64/cloud_fusion/python37/mindspore-lite-2.0.0-linux-aarch64.tar.gz tar -zxvf mindspore-lite-2.0.0-linux-aarch64.tar.gz 将转换工具需要的动态链接库加入环境变量LD_LIBRARY_PATH。 ``` export PACKAGE_ROOT_PATH=/home/ma-user/work/mindspore-lite-2.0.0-linux-aarch64 export LD_LIBRARY_PATH=${PACKAGE_ROOT_PATH}/tools/converter/lib:${LD_LIBRARY_PATH} export PATH=${PACKAGE_ROOT_PATH}/tools/converter/converter:$PATH ``` 转换模型 ``` converter_lite --fmk=ONNX --saveType=MINDIR --optimize=none --modelFile=safeHelmet.onnx --outputFile=safeHelmet ``` 提示转换成功 后执行代码中的msLite_infer.py执行即可 ## 精度 todo ## 性能 todo