# mindspore_lite_samples
**Repository Path**: don-quixote-der/mindspore_lite_samples
## Basic Information
- **Project Name**: mindspore_lite_samples
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2023-11-02
- **Last Updated**: 2023-11-02
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
Mindspore_lite安装使用说明
## 安装
在这下载:https://www.mindspore.cn/lite/docs/zh-CN/r2.2/use/downloads.html
在昇腾环境上 注意mindspore_lite与CANN的对应关系
### C++安装
下载并解压 C++,需要配置LD_LIBRARY_PATH
```shell
wget https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/lite/release/linux/aarch64/cloud_fusion/python37/mindspore-lite-2.2.0-linux-aarch64.tar.gz
tar -zxvf mindspore-lite-2.2.0-linux-aarch64.tar.gz
```
### Python安装
下载python使用包
注意下载对应CPU架构与python版本
```shell
wget https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/lite/release/linux/aarch64/cloud_fusion/python39/mindspore_lite-2.2.0-cp39-cp39-linux_aarch64.whl
pip install mindspore_lite-2.2.0-cp39-cp39-linux_aarch64.whl
```
## 推理
### Python
快速入门例子
云端推理参考 https://www.mindspore.cn/lite/docs/zh-CN/r2.2/use/cloud_infer/runtime_python.html
python快速入门(CPU推理)
下载模型与数据
```shell
mkdir model
wget https://download.mindspore.cn/model_zoo/official/lite/quick_start/mobilenetv2.mindir
wget https://download.mindspore.cn/model_zoo/official/lite/quick_start/input.bin
```
执行quick_demo下的 quick_start_cloud_infer_python.py
python quick_start_cloud_infer_python.py
### 转换ONNX demo
下载转换工具
wget https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/lite/release/linux/aarch64/cloud_fusion/python37/mindspore-lite-2.0.0-linux-aarch64.tar.gz
tar -zxvf mindspore-lite-2.0.0-linux-aarch64.tar.gz
将转换工具需要的动态链接库加入环境变量LD_LIBRARY_PATH。
```
export PACKAGE_ROOT_PATH=/home/ma-user/work/mindspore-lite-2.0.0-linux-aarch64
export LD_LIBRARY_PATH=${PACKAGE_ROOT_PATH}/tools/converter/lib:${LD_LIBRARY_PATH}
export PATH=${PACKAGE_ROOT_PATH}/tools/converter/converter:$PATH
```
转换模型
```
converter_lite --fmk=ONNX --saveType=MINDIR --optimize=none --modelFile=safeHelmet.onnx --outputFile=safeHelmet
```
提示转换成功
后执行代码中的msLite_infer.py执行即可
## 精度
todo
## 性能
todo