# AutowareArchitectureProposal **Repository Path**: eelog/AutowareArchitectureProposal ## Basic Information - **Project Name**: AutowareArchitectureProposal - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2025-04-16 - **Last Updated**: 2025-04-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Autoware (Architecture Proposal) ![autoware](https://user-images.githubusercontent.com/8327598/69472442-cca50b00-0ded-11ea-9da0-9e2302aa1061.png) # What's this This is the source code of the feasibility study for Autoware architecture proposal. > **WARNING**: This source is solely for demonstrating an architecture proposal. It should not be used to drive cars. Architecture overview is [here](/design/Overview.md). # How to setup ## Requirements ### Hardware - x86 CPU (8 or more cores) - 16 GB or more of memory - Nvidia GPU (4GB or more of memory) : ### Software - Ubuntu 18.04 - Nvidia driver If cuda or tensorRT is already installed, it is recommended to remove it. ## Autoware setup 1. Clone this repository ``` git clone https://github.com/tier4/AutowareArchitectureProposal.git cd AutowareArchitectureProposal/ ``` 2. Run the setup script ``` ./setup_ubuntu18.04.sh ``` In this step, the following software are installed. Please confirm their licenses before using them. - [osqp](https://github.com/oxfordcontrol/osqp/blob/master/LICENSE) - [ROS Melodic](https://github.com/ros/ros/blob/noetic-devel/LICENSE) - [CUDA 10.2](https://docs.nvidia.com/cuda/eula/index.html) - [cuDNN 7](https://docs.nvidia.com/deeplearning/sdk/cudnn-sla/index.html) - [TensorRT 7](https://docs.nvidia.com/deeplearning/sdk/tensorrt-sla/index.html) - [geographiclib-tools](https://geographiclib.sourceforge.io/html/LICENSE.txt) 3. Build the source ``` catkin build --cmake-args -DCMAKE_BUILD_TYPE=Release ``` Note that the computer need to be connected to Internet to download neural network weight files. # How to run ## Simulator ![sim](https://user-images.githubusercontent.com/8327598/79709776-0bd47b00-82fe-11ea-872e-d94ef25bc3bf.png) ### Quick Start #### Rosbag 1. Download sample map from [here](https://drive.google.com/open?id=1ovrJcFS5CZ2H51D8xVWNtEvj_oiXW-zk) and extract the zip file. 2. Download sample rosbag from [here](https://drive.google.com/open?id=1BFcNjIBUVKwupPByATYczv2X4qZtdAeD). 3. Launch Autoware ``` source devel/setup.bash roslaunch autoware_launch autoware.launch map_path:=[path] rosbag:=true ``` 4. Play rosbag ``` rosbag play --clock [rosbag file] -r 0.2 ``` ##### Note - sample map : © 2020 TierIV inc. - rosbag : © 2020 TierIV inc. - Image data are removed due to privacy concerns. - Cannot run traffic light recognition - Decreased accuracy of object detection #### Planning Simulator 1. Download sample map from [here](https://drive.google.com/open?id=197kgRfSomZzaSbRrjWTx614le2qN-oxx) and extract the zip file. 2. Launch Autoware ``` source devel/setup.bash roslaunch autoware_launch planning_simulator.launch map_path:=[path] ``` 3. Set initial pose 4. Set goal pose 5. Push engage button. [autoware_web_controller](http://localhost:8085/autoware_web_controller/index.html) ##### Note - sample map : © 2020 TierIV inc. ### Tutorial in detail See [here](https://github.com/tier4/AutowareArchitectureProposal/blob/master/docs/SimulationTutorial.md). for more information. # References ## Videos - [Scenario demo](https://youtu.be/kn2bIU_g0oY) - [Obstacle avoidance in the same lane](https://youtu.be/s_4fBDixFJc) - [Obstacle avoidance by lane change](https://youtu.be/SCIceXW9sqM) - [Object recognition](https://youtu.be/uhhMIxe1zxQ) - [Auto parking](https://youtu.be/e9R0F0ZJbWE) - [360° FOV perception(Camera Lidar Fuison)](https://youtu.be/whzx-2RkVBA) - [Robustness of localization](https://youtu.be/ydPxWB2jVnM) ## Credits - [Neural Network Weight Files](https://github.com/tier4/AutowareArchitectureProposal/blob/master/docs/Credits.md)