# ml_implementation **Repository Path**: elegyprincess/ml_implementation ## Basic Information - **Project Name**: ml_implementation - **Description**: Implementation of Machine Learning Algorithms - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-01-16 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Implementation of Machine Learning ## Introduction These are the implementation of machine learning algorithms **from scratch**. * [x] [Linear_regression](./linear_regression/) * [x] [Least square method](./linear_regression/least_square_method.py) * [x] [Logistic regression](./logistic_regression/) * [x] [Logistic regression](./logistic_regression/logistic_regression.py) * [x] [Distributed logistic regression](./logistic_regression/distributed_logistic_regression.py) * [x] [Bayes](./bayes/) * [x] [Navie bayes](./bayes/navie_bayes.py) * [x] [Decision tree](./decision_tree/) * [x] [C4.5 decision tree](./c45_decision_tree/decision_tree.py) * [x] [ID3 decision tree](./id3_decision_tree/decision_tree.py) * [ ] Random forest * [ ] Gradient boosting tree * [x] [Neural network](./neural_network/) * [x] [Perception](./neural_network/perception.py) * [x] [Neural network](./neural_network/neural_network.py) * [x] [SVM](./svm/) * [x] [SVM](./svm/svm.py) * [ ] [FM](./fm/) * [ ] [Random forest](./random_forest/) * [ ] [KMeans](./kmeans/) * [ ] [Condictional random field](./condictional_random_field/) * [ ] [Condictional random field](./condictional_random_field/condictional_random_field.py) * [ ] [Others](./others/) * [ ] [Sigmoid](./others/sigmoid/) * [ ] [Standard deviation](./others/standard_deviation/) * [ ] [Normal distribution](./others/normal_distribution/) * [ ] [Auto gradient](./others/autogradient/) * [x] [Random walk](./others/random_walk/)