# BitNet **Repository Path**: firebux/BitNet ## Basic Information - **Project Name**: BitNet - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: arch-name-dev - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-04-24 - **Last Updated**: 2025-04-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # bitnet.cpp [![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT) ![version](https://img.shields.io/badge/version-1.0-blue) [BitNet Model on Hugging Face](https://huggingface.co/microsoft/BitNet-b1.58-2B-4T) Try it out via this [demo](https://bitnet-demo.azurewebsites.net/), or [build and run](https://github.com/microsoft/BitNet?tab=readme-ov-file#build-from-source) it on your own CPU. bitnet.cpp is the official inference framework for 1-bit LLMs (e.g., BitNet b1.58). It offers a suite of optimized kernels, that support **fast** and **lossless** inference of 1.58-bit models on CPU (with NPU and GPU support coming next). The first release of bitnet.cpp is to support inference on CPUs. bitnet.cpp achieves speedups of **1.37x** to **5.07x** on ARM CPUs, with larger models experiencing greater performance gains. Additionally, it reduces energy consumption by **55.4%** to **70.0%**, further boosting overall efficiency. On x86 CPUs, speedups range from **2.37x** to **6.17x** with energy reductions between **71.9%** to **82.2%**. Furthermore, bitnet.cpp can run a 100B BitNet b1.58 model on a single CPU, achieving speeds comparable to human reading (5-7 tokens per second), significantly enhancing the potential for running LLMs on local devices. Please refer to the [technical report](https://arxiv.org/abs/2410.16144) for more details. m2_performance m2_performance >The tested models are dummy setups used in a research context to demonstrate the inference performance of bitnet.cpp. ## Demo A demo of bitnet.cpp running a BitNet b1.58 3B model on Apple M2: https://github.com/user-attachments/assets/7f46b736-edec-4828-b809-4be780a3e5b1 ## What's New: - 04/14/2025 [BitNet Official 2B Parameter Model on Hugging Face](https://huggingface.co/microsoft/BitNet-b1.58-2B-4T) ![NEW](https://img.shields.io/badge/NEW-red) - 02/18/2025 [Bitnet.cpp: Efficient Edge Inference for Ternary LLMs](https://arxiv.org/abs/2502.11880) - 11/08/2024 [BitNet a4.8: 4-bit Activations for 1-bit LLMs](https://arxiv.org/abs/2411.04965) - 10/21/2024 [1-bit AI Infra: Part 1.1, Fast and Lossless BitNet b1.58 Inference on CPUs](https://arxiv.org/abs/2410.16144) - 10/17/2024 bitnet.cpp 1.0 released. - 03/21/2024 [The-Era-of-1-bit-LLMs__Training_Tips_Code_FAQ](https://github.com/microsoft/unilm/blob/master/bitnet/The-Era-of-1-bit-LLMs__Training_Tips_Code_FAQ.pdf) - 02/27/2024 [The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits](https://arxiv.org/abs/2402.17764) - 10/17/2023 [BitNet: Scaling 1-bit Transformers for Large Language Models](https://arxiv.org/abs/2310.11453) ## Acknowledgements This project is based on the [llama.cpp](https://github.com/ggerganov/llama.cpp) framework. We would like to thank all the authors for their contributions to the open-source community. Also, bitnet.cpp's kernels are built on top of the Lookup Table methodologies pioneered in [T-MAC](https://github.com/microsoft/T-MAC/). For inference of general low-bit LLMs beyond ternary models, we recommend using T-MAC. ## Official Models
Model Parameters CPU Kernel
I2_S TL1 TL2
BitNet-b1.58-2B-4T 2.4B x86
ARM
## Supported Models ❗️**We use existing 1-bit LLMs available on [Hugging Face](https://huggingface.co/) to demonstrate the inference capabilities of bitnet.cpp. We hope the release of bitnet.cpp will inspire the development of 1-bit LLMs in large-scale settings in terms of model size and training tokens.**
Model Parameters CPU Kernel
I2_S TL1 TL2
bitnet_b1_58-large 0.7B x86
ARM
bitnet_b1_58-3B 3.3B x86
ARM
Llama3-8B-1.58-100B-tokens 8.0B x86
ARM
Falcon3 Family 1B-10B x86
ARM
## Installation ### Requirements - python>=3.9 - cmake>=3.22 - clang>=18 - For Windows users, install [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/). In the installer, toggle on at least the following options(this also automatically installs the required additional tools like CMake): - Desktop-development with C++ - C++-CMake Tools for Windows - Git for Windows - C++-Clang Compiler for Windows - MS-Build Support for LLVM-Toolset (clang) - For Debian/Ubuntu users, you can download with [Automatic installation script](https://apt.llvm.org/) `bash -c "$(wget -O - https://apt.llvm.org/llvm.sh)"` - conda (highly recommend) ### Build from source > [!IMPORTANT] > If you are using Windows, please remember to always use a Developer Command Prompt / PowerShell for VS2022 for the following commands. Please refer to the FAQs below if you see any issues. 1. Clone the repo ```bash git clone --recursive https://github.com/microsoft/BitNet.git cd BitNet ``` 2. Install the dependencies ```bash # (Recommended) Create a new conda environment conda create -n bitnet-cpp python=3.9 conda activate bitnet-cpp pip install -r requirements.txt ``` 3. Build the project ```bash # Manually download the model and run with local path huggingface-cli download microsoft/BitNet-b1.58-2B-4T-gguf --local-dir models/BitNet-b1.58-2B-4T python setup_env.py -md models/BitNet-b1.58-2B-4T -q i2_s ```
usage: setup_env.py [-h] [--hf-repo {1bitLLM/bitnet_b1_58-large,1bitLLM/bitnet_b1_58-3B,HF1BitLLM/Llama3-8B-1.58-100B-tokens,tiiuae/Falcon3-1B-Instruct-1.58bit,tiiuae/Falcon3-3B-Instruct-1.58bit,tiiuae/Falcon3-7B-Instruct-1.58bit,tiiuae/Falcon3-10B-Instruct-1.58bit}] [--model-dir MODEL_DIR] [--log-dir LOG_DIR] [--quant-type {i2_s,tl1}] [--quant-embd]
                    [--use-pretuned]

Setup the environment for running inference

optional arguments:
  -h, --help            show this help message and exit
  --hf-repo {1bitLLM/bitnet_b1_58-large,1bitLLM/bitnet_b1_58-3B,HF1BitLLM/Llama3-8B-1.58-100B-tokens,tiiuae/Falcon3-1B-Instruct-1.58bit,tiiuae/Falcon3-3B-Instruct-1.58bit,tiiuae/Falcon3-7B-Instruct-1.58bit,tiiuae/Falcon3-10B-Instruct-1.58bit}, -hr {1bitLLM/bitnet_b1_58-large,1bitLLM/bitnet_b1_58-3B,HF1BitLLM/Llama3-8B-1.58-100B-tokens,tiiuae/Falcon3-1B-Instruct-1.58bit,tiiuae/Falcon3-3B-Instruct-1.58bit,tiiuae/Falcon3-7B-Instruct-1.58bit,tiiuae/Falcon3-10B-Instruct-1.58bit}
                        Model used for inference
  --model-dir MODEL_DIR, -md MODEL_DIR
                        Directory to save/load the model
  --log-dir LOG_DIR, -ld LOG_DIR
                        Directory to save the logging info
  --quant-type {i2_s,tl1}, -q {i2_s,tl1}
                        Quantization type
  --quant-embd          Quantize the embeddings to f16
  --use-pretuned, -p    Use the pretuned kernel parameters
## Usage ### Basic usage ```bash # Run inference with the quantized model python run_inference.py -m models/BitNet-b1.58-2B-4T/ggml-model-i2_s.gguf -p "You are a helpful assistant" -cnv ```
usage: run_inference.py [-h] [-m MODEL] [-n N_PREDICT] -p PROMPT [-t THREADS] [-c CTX_SIZE] [-temp TEMPERATURE] [-cnv]

Run inference

optional arguments:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Path to model file
  -n N_PREDICT, --n-predict N_PREDICT
                        Number of tokens to predict when generating text
  -p PROMPT, --prompt PROMPT
                        Prompt to generate text from
  -t THREADS, --threads THREADS
                        Number of threads to use
  -c CTX_SIZE, --ctx-size CTX_SIZE
                        Size of the prompt context
  -temp TEMPERATURE, --temperature TEMPERATURE
                        Temperature, a hyperparameter that controls the randomness of the generated text
  -cnv, --conversation  Whether to enable chat mode or not (for instruct models.)
                        (When this option is turned on, the prompt specified by -p will be used as the system prompt.)
### Benchmark We provide scripts to run the inference benchmark providing a model. ``` usage: e2e_benchmark.py -m MODEL [-n N_TOKEN] [-p N_PROMPT] [-t THREADS] Setup the environment for running the inference required arguments: -m MODEL, --model MODEL Path to the model file. optional arguments: -h, --help Show this help message and exit. -n N_TOKEN, --n-token N_TOKEN Number of generated tokens. -p N_PROMPT, --n-prompt N_PROMPT Prompt to generate text from. -t THREADS, --threads THREADS Number of threads to use. ``` Here's a brief explanation of each argument: - `-m`, `--model`: The path to the model file. This is a required argument that must be provided when running the script. - `-n`, `--n-token`: The number of tokens to generate during the inference. It is an optional argument with a default value of 128. - `-p`, `--n-prompt`: The number of prompt tokens to use for generating text. This is an optional argument with a default value of 512. - `-t`, `--threads`: The number of threads to use for running the inference. It is an optional argument with a default value of 2. - `-h`, `--help`: Show the help message and exit. Use this argument to display usage information. For example: ```sh python utils/e2e_benchmark.py -m /path/to/model -n 200 -p 256 -t 4 ``` This command would run the inference benchmark using the model located at `/path/to/model`, generating 200 tokens from a 256 token prompt, utilizing 4 threads. For the model layout that do not supported by any public model, we provide scripts to generate a dummy model with the given model layout, and run the benchmark on your machine: ```bash python utils/generate-dummy-bitnet-model.py models/bitnet_b1_58-large --outfile models/dummy-bitnet-125m.tl1.gguf --outtype tl1 --model-size 125M # Run benchmark with the generated model, use -m to specify the model path, -p to specify the prompt processed, -n to specify the number of token to generate python utils/e2e_benchmark.py -m models/dummy-bitnet-125m.tl1.gguf -p 512 -n 128 ``` ### FAQ (Frequently Asked Questions)📌 #### Q1: The build dies with errors building llama.cpp due to issues with std::chrono in log.cpp? **A:** This is an issue introduced in recent version of llama.cpp. Please refer to this [commit](https://github.com/tinglou/llama.cpp/commit/4e3db1e3d78cc1bcd22bcb3af54bd2a4628dd323) in the [discussion](https://github.com/abetlen/llama-cpp-python/issues/1942) to fix this issue. #### Q2: How to build with clang in conda environment on windows? **A:** Before building the project, verify your clang installation and access to Visual Studio tools by running: ``` clang -v ``` This command checks that you are using the correct version of clang and that the Visual Studio tools are available. If you see an error message such as: ``` 'clang' is not recognized as an internal or external command, operable program or batch file. ``` It indicates that your command line window is not properly initialized for Visual Studio tools. • If you are using Command Prompt, run: ``` "C:\Program Files\Microsoft Visual Studio\2022\Professional\Common7\Tools\VsDevCmd.bat" -startdir=none -arch=x64 -host_arch=x64 ``` • If you are using Windows PowerShell, run the following commands: ``` Import-Module "C:\Program Files\Microsoft Visual Studio\2022\Professional\Common7\Tools\Microsoft.VisualStudio.DevShell.dll" Enter-VsDevShell 3f0e31ad -SkipAutomaticLocation -DevCmdArguments "-arch=x64 -host_arch=x64" ``` These steps will initialize your environment and allow you to use the correct Visual Studio tools.