# TensorFlow2.0_Image_Classification **Repository Path**: futureflsl/TensorFlow2.0_Image_Classification ## Basic Information - **Project Name**: TensorFlow2.0_Image_Classification - **Description**: A TensorFlow_2.0 implementation of AlexNet and VGGNet. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 0 - **Created**: 2020-07-09 - **Last Updated**: 2023-03-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TensorFlow2.0_Image_Classification(include AlexNet and VGGNet) This project uses TensorFlow2.0 for image classification tasks. ## How to use ### Requirements + **Python 3.x** (My Python version is 3.6.8)
+ **TensorFlow version: 2.0.0-beta1**
+ The file directory of the dataset should look like this:
``` ${dataset_root} |——train | |——class_name_0 | |——class_name_1 | |——class_name_2 | |——class_name_3 |——valid | |——class_name_0 | |——class_name_1 | |——class_name_2 | |——class_name_3 |——test |——class_name_0 |——class_name_1 |——class_name_2 |——class_name_3 ``` ### Train Run the script ``` python train.py ``` to train the network on your image dataset, the final model will be stored. You can also change the corresponding training parameters in the `config.py`.
### Evaluate To evaluate the model's performance on the test dataset, you can run `evaluate.py`.
The structure of the network is defined in `model_definition.py`, you can change the network structure to whatever you like.
## References 1. AlexNet : http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf 2. VGG : https://arxiv.org/abs/1409.1556