# DTC **Repository Path**: fxtfxt/DTC ## Basic Information - **Project Name**: DTC - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-26 - **Last Updated**: 2021-09-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Dual-task Consistency Code for this paper: Semi-supervised Medical Image Segmentation through Dual-task Consistency ([AAAI2021](https://ojs.aaai.org/index.php/AAAI/article/view/17066)) @inproceedings{luo2021semi, title={Semi-supervised Medical Image Segmentation through Dual-task Consistency}, author={Luo, Xiangde and Chen, Jieneng and Song, Tao and Wang, Guotai}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={35}, number={10}, pages={8801--8809}, year={2021} } ## Requirements Some important required packages include: * [Pytorch][torch_link] version >=0.4.1. * TensorBoardX * Python == 3.6 * Some basic python packages such as Numpy, Scikit-image, SimpleITK, Scipy ...... Follow official guidance to install [Pytorch][torch_link]. [torch_link]:https://pytorch.org/ # Usage 1. Clone the repo: ``` git clone https://github.com/HiLab-git/DTC.git cd DTC ``` 2. Put the data in [data/2018LA_Seg_Training Set](https://github.com/Luoxd1996/DTC/tree/master/data/2018LA_Seg_Training%20Set). 3. Train the model ``` cd code python train_la_dtc.py ``` 4. Test the model ``` python test_LA.py ``` Our pre-trained models are saved in the model dir [DTC_model](https://github.com/Luoxd1996/DTC/tree/master/model) (both 8 labeled images and 16 labeled images), and the pretrained SASSNet and UAMT model can be download from [SASSNet_model](https://github.com/kleinzcy/SASSnet/tree/master/model) and [UA-MT_model](https://github.com/yulequan/UA-MT/tree/master/model). The other comparison method can be found in [SSL4MIS](https://github.com/HiLab-git/SSL4MIS) ## Results on the Left Atrium dataset (SOTA). * The training set consists of 16 labeled scans and 64 unlabeled scans and the testing set includes 20 scans. |Methods|DICE (%) | Jaccard (%) | ASD (voxel) | 95HD (voxel)|Reference|Released Date| |---|---|---|---|---|---|---| |[UAMT](https://arxiv.org/pdf/1907.07034.pdf)|88.88|80.21|2.26|7.32|MICCAI2019|2019-10| |[SASSNet](https://arxiv.org/pdf/2007.10732.pdf)|89.54|81.24|2.20|8.24|MICCAI2020|2020-07| | [DTC](https://ojs.aaai.org/index.php/AAAI/article/view/17066)|89.42|80.98|2.10|7.32|AAAI2021|2020-09| |[LG-ER-MT](https://link.springer.com/chapter/10.1007/978-3-030-59710-8_55)|89.62|81.31| 2.06| 7.16|MICCAI2020|2020-10| |[DUWM](https://link.springer.com/chapter/10.1007%2F978-3-030-59710-8_53)|89.65| 81.35| 2.03| 7.04|MICCAI2020|2020-10| |[MC-Net](https://arxiv.org/pdf/2103.02911.pdf)|90.34| 82.48| 1.77| 6.00|Arxiv|2021-03| * The training set consists of 8 labeled scans and 72 unlabeled scans and the testing set includes 20 scans. |Methods|DICE (%) | Jaccard (%) | ASD (voxel) | 95HD (voxel)|Reference|Released Date| |---|---|---|---|---|---|---| |[UAMT](https://arxiv.org/pdf/1907.07034.pdf)|84.25|73.48|3.36|13.84|MICCAI2019|2019-10| |[SASSNet](https://arxiv.org/pdf/2007.10732.pdf)|87.32|77.72|2.55|9.62|MICCAI2020|2020-07| | [DTC*](https://ojs.aaai.org/index.php/AAAI/article/view/17066)|87.51|78.17|2.36|8.23|AAAI2021|2020-09| |[LG-ER-MT](https://link.springer.com/chapter/10.1007/978-3-030-59710-8_55)|85.54|75.12|3.77|13.29|MICCAI2020|2020-10| |[DUWM](https://link.springer.com/chapter/10.1007%2F978-3-030-59710-8_53)|85.91|75.75|3.31|12.67|MICCAI2020|2020-10| |[MC-Net](https://arxiv.org/pdf/2103.02911.pdf)|87.71|78.31|2.18| 9.36|Arxiv|2021-03| * Note that, * denotes the results from [MC-Net](https://arxiv.org/pdf/2103.02911.pdf) and the model has been openly available (provided by Dr. YiCheng), thanks for [Dr. Yicheng](https://ycwu1997.github.io/eli/). ## Acknowledgement * This code is adapted from [UA-MT](https://github.com/yulequan/UA-MT), [SASSNet](https://github.com/kleinzcy/SASSnet), [SegWithDistMap](https://github.com/JunMa11/SegWithDistMap). * We thank Dr. Lequan Yu, M.S. Shuailin Li and Dr. Jun Ma for their elegant and efficient code base. * More semi-supervised learning approaches for medical image segmentation have been summarized in [SSL4MIS](https://github.com/Luoxd1996/awesome-semi-supervised-learning-for-medical-image-segmentation).