代码拉取完成,页面将自动刷新
同步操作将从 openEuler-RISC-V/tensorflow 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
From f7cc8755ac6683131fdfa7a8a121f9d7a9dec6fb Mon Sep 17 00:00:00 2001
From: Mihai Maruseac <mihaimaruseac@google.com>
Date: Wed, 5 May 2021 11:40:50 -0700
Subject: [PATCH] Add several missing validations in SDCA
PiperOrigin-RevId: 372172877
Change-Id: Id366da962432e18dcbfac847d11e98488bebb70a
---
tensorflow/core/kernels/sdca_internal.cc | 36 ++++++++++++++++++++++++
1 file changed, 36 insertions(+)
diff --git a/tensorflow/core/kernels/sdca_internal.cc b/tensorflow/core/kernels/sdca_internal.cc
index cbc754af0e9bb..11a3be8bf46a7 100644
--- a/tensorflow/core/kernels/sdca_internal.cc
+++ b/tensorflow/core/kernels/sdca_internal.cc
@@ -99,6 +99,10 @@ Status ModelWeights::Initialize(OpKernelContext* const context) {
OpInputList sparse_weights_inputs;
TF_RETURN_IF_ERROR(
context->input_list("sparse_weights", &sparse_weights_inputs));
+ if (sparse_indices_inputs.size() != sparse_weights_inputs.size())
+ return errors::InvalidArgument(
+ "sparse_indices and sparse_weights must have the same length, got ",
+ sparse_indices_inputs.size(), " and ", sparse_weights_inputs.size());
OpInputList dense_weights_inputs;
TF_RETURN_IF_ERROR(
context->input_list("dense_weights", &dense_weights_inputs));
@@ -106,10 +110,20 @@ Status ModelWeights::Initialize(OpKernelContext* const context) {
OpOutputList sparse_weights_outputs;
TF_RETURN_IF_ERROR(context->output_list("out_delta_sparse_weights",
&sparse_weights_outputs));
+ if (sparse_weights_outputs.size() != sparse_weights_inputs.size())
+ return errors::InvalidArgument(
+ "out_delta_sparse_weights and sparse_weights must have the same "
+ "length, got ",
+ sparse_weights_outputs.size(), " and ", sparse_weights_inputs.size());
OpOutputList dense_weights_outputs;
TF_RETURN_IF_ERROR(
context->output_list("out_delta_dense_weights", &dense_weights_outputs));
+ if (dense_weights_outputs.size() != dense_weights_inputs.size())
+ return errors::InvalidArgument(
+ "out_delta_dense_weights and dense_weights must have the same length, "
+ "got ",
+ dense_weights_outputs.size(), " and ", dense_weights_inputs.size());
for (int i = 0; i < sparse_weights_inputs.size(); ++i) {
Tensor* delta_t;
@@ -327,13 +341,28 @@ Status Examples::Initialize(OpKernelContext* const context,
OpInputList sparse_example_indices_inputs;
TF_RETURN_IF_ERROR(context->input_list("sparse_example_indices",
&sparse_example_indices_inputs));
+ if (sparse_example_indices_inputs.size() != num_sparse_features)
+ return errors::InvalidArgument(
+ "Expected ", num_sparse_features,
+ " tensors in sparse_example_indices but got ",
+ sparse_example_indices_inputs.size());
OpInputList sparse_feature_indices_inputs;
TF_RETURN_IF_ERROR(context->input_list("sparse_feature_indices",
&sparse_feature_indices_inputs));
+ if (sparse_feature_indices_inputs.size() != num_sparse_features)
+ return errors::InvalidArgument(
+ "Expected ", num_sparse_features,
+ " tensors in sparse_feature_indices but got ",
+ sparse_feature_indices_inputs.size());
OpInputList sparse_feature_values_inputs;
if (num_sparse_features_with_values > 0) {
TF_RETURN_IF_ERROR(context->input_list("sparse_feature_values",
&sparse_feature_values_inputs));
+ if (sparse_feature_values_inputs.size() != num_sparse_features_with_values)
+ return errors::InvalidArgument(
+ "Expected ", num_sparse_features_with_values,
+ " tensors in sparse_feature_values but got ",
+ sparse_feature_values_inputs.size());
}
const Tensor* example_weights_t;
@@ -400,6 +429,13 @@ Status Examples::CreateSparseFeatureRepresentation(
sparse_example_indices_inputs[i].template flat<int64>();
auto feature_indices =
sparse_feature_indices_inputs[i].template flat<int64>();
+ if (example_indices.size() != feature_indices.size()) {
+ mutex_lock l(mu);
+ result = errors::InvalidArgument(
+ "Found mismatched example_indices and feature_indices [",
+ example_indices, "] vs [", feature_indices, "]");
+ return;
+ }
// Parse features for each example. Features for a particular example
// are at the offsets (start_id, end_id]
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。