代码拉取完成,页面将自动刷新
同步操作将从 openEuler-RISC-V/tensorflow 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
From 203214568f5bc237603dbab6e1fd389f1572f5c9 Mon Sep 17 00:00:00 2001
From: Mihai Maruseac <mihaimaruseac@google.com>
Date: Fri, 30 Jul 2021 16:06:23 -0700
Subject: [PATCH] Reorganize and add more validation to MKL requantization
PiperOrigin-RevId: 387901341
Change-Id: I2515b9034c64e113db0bcec8337d30643ab0a0f1
---
.../mkl_requantize_per_channel_op.cc | 40 ++++++++++++-------
1 file changed, 25 insertions(+), 15 deletions(-)
diff --git a/tensorflow/core/kernels/mkl_requantize_per_channel_op.cc b/tensorflow/core/kernels/mkl_requantize_per_channel_op.cc
index c0f9845cd4b08..6ffbd09b44f54 100644
--- a/tensorflow/core/kernels/mkl_requantize_per_channel_op.cc
+++ b/tensorflow/core/kernels/mkl_requantize_per_channel_op.cc
@@ -49,35 +49,45 @@ class MklRequantizePerChannelOp : public OpKernel {
void Compute(OpKernelContext* ctx) override {
try {
const Tensor& input = ctx->input(kInputTensorIndex);
+ OP_REQUIRES(
+ ctx, input.dims() == 4,
+ errors::InvalidArgument("Current RequantizePerChannel operator"
+ "supports 4D tensors only."));
+
const Tensor& input_min_vec = ctx->input(kInputMinVecIndex);
+ size_t depth = input_min_vec.NumElements();
float* input_min_vec_data = (float*)const_cast<void*>(
static_cast<const void*>(input_min_vec.flat<float>().data()));
+
const Tensor& input_max_vec = ctx->input(kInputMaxVecIndex);
+ OP_REQUIRES(
+ ctx, input_max_vec.NumElements() == depth,
+ errors::InvalidArgument("input_max has incorrect size, expected ",
+ depth, " was ", input_max_vec.NumElements()));
float* input_max_vec_data = (float*)const_cast<void*>(
static_cast<const void*>(input_max_vec.flat<float>().data()));
const Tensor& input_requested_min = ctx->input(this->kRequestMinIndex);
+ OP_REQUIRES(
+ ctx, input_requested_min.NumElements() == 1,
+ errors::InvalidArgument("requested_output_min must be a scalar"));
const float input_requested_min_float =
input_requested_min.flat<float>()(0);
+
const Tensor& input_requested_max = ctx->input(this->kRequestMaxIndex);
+ OP_REQUIRES(
+ ctx, input_requested_min.NumElements() == 1,
+ errors::InvalidArgument("requested_output_max must be a scalar"));
const float input_requested_max_float =
input_requested_max.flat<float>()(0);
- size_t depth = input_min_vec.NumElements();
- OP_REQUIRES(
- ctx, input.dims() == 4,
- errors::InvalidArgument("Current RequantizePerChannel operator"
- "supports 4D tensors only."));
- OP_REQUIRES(
- ctx, input_min_vec.dim_size(0) == depth,
- errors::InvalidArgument("input_min has incorrect size, expected ",
- depth, " was ", input_min_vec.dim_size(0)));
- OP_REQUIRES(
- ctx, input_max_vec.dim_size(0) == depth,
- errors::InvalidArgument("input_max has incorrect size, expected ",
- depth, " was ", input_max_vec.dim_size(0)));
-
- if (out_type_ == DT_QINT8) DCHECK(input_requested_min_float < 0.0f);
+ if (out_type_ == DT_QINT8) {
+ OP_REQUIRES(ctx, input_requested_min_float < 0.0f,
+ errors::InvalidArgument(
+ "If out_type is QINT8, requested_output_max must be "
+ "non negative, got ",
+ input_requested_min_float));
+ }
const float factor = (out_type_ == DT_QINT8) ? 127.0f : 255.0f;
const float requested_min_max =
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。