1 Star 0 Fork 51

gice/tensorflow

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
CVE-2021-37665-1.patch 3.63 KB
一键复制 编辑 原始数据 按行查看 历史
starlet_dx 提交于 2021-08-31 15:06 +08:00 . fix the cves to tensorflow
From 203214568f5bc237603dbab6e1fd389f1572f5c9 Mon Sep 17 00:00:00 2001
From: Mihai Maruseac <mihaimaruseac@google.com>
Date: Fri, 30 Jul 2021 16:06:23 -0700
Subject: [PATCH] Reorganize and add more validation to MKL requantization
PiperOrigin-RevId: 387901341
Change-Id: I2515b9034c64e113db0bcec8337d30643ab0a0f1
---
.../mkl_requantize_per_channel_op.cc | 40 ++++++++++++-------
1 file changed, 25 insertions(+), 15 deletions(-)
diff --git a/tensorflow/core/kernels/mkl_requantize_per_channel_op.cc b/tensorflow/core/kernels/mkl_requantize_per_channel_op.cc
index c0f9845cd4b08..6ffbd09b44f54 100644
--- a/tensorflow/core/kernels/mkl_requantize_per_channel_op.cc
+++ b/tensorflow/core/kernels/mkl_requantize_per_channel_op.cc
@@ -49,35 +49,45 @@ class MklRequantizePerChannelOp : public OpKernel {
void Compute(OpKernelContext* ctx) override {
try {
const Tensor& input = ctx->input(kInputTensorIndex);
+ OP_REQUIRES(
+ ctx, input.dims() == 4,
+ errors::InvalidArgument("Current RequantizePerChannel operator"
+ "supports 4D tensors only."));
+
const Tensor& input_min_vec = ctx->input(kInputMinVecIndex);
+ size_t depth = input_min_vec.NumElements();
float* input_min_vec_data = (float*)const_cast<void*>(
static_cast<const void*>(input_min_vec.flat<float>().data()));
+
const Tensor& input_max_vec = ctx->input(kInputMaxVecIndex);
+ OP_REQUIRES(
+ ctx, input_max_vec.NumElements() == depth,
+ errors::InvalidArgument("input_max has incorrect size, expected ",
+ depth, " was ", input_max_vec.NumElements()));
float* input_max_vec_data = (float*)const_cast<void*>(
static_cast<const void*>(input_max_vec.flat<float>().data()));
const Tensor& input_requested_min = ctx->input(this->kRequestMinIndex);
+ OP_REQUIRES(
+ ctx, input_requested_min.NumElements() == 1,
+ errors::InvalidArgument("requested_output_min must be a scalar"));
const float input_requested_min_float =
input_requested_min.flat<float>()(0);
+
const Tensor& input_requested_max = ctx->input(this->kRequestMaxIndex);
+ OP_REQUIRES(
+ ctx, input_requested_min.NumElements() == 1,
+ errors::InvalidArgument("requested_output_max must be a scalar"));
const float input_requested_max_float =
input_requested_max.flat<float>()(0);
- size_t depth = input_min_vec.NumElements();
- OP_REQUIRES(
- ctx, input.dims() == 4,
- errors::InvalidArgument("Current RequantizePerChannel operator"
- "supports 4D tensors only."));
- OP_REQUIRES(
- ctx, input_min_vec.dim_size(0) == depth,
- errors::InvalidArgument("input_min has incorrect size, expected ",
- depth, " was ", input_min_vec.dim_size(0)));
- OP_REQUIRES(
- ctx, input_max_vec.dim_size(0) == depth,
- errors::InvalidArgument("input_max has incorrect size, expected ",
- depth, " was ", input_max_vec.dim_size(0)));
-
- if (out_type_ == DT_QINT8) DCHECK(input_requested_min_float < 0.0f);
+ if (out_type_ == DT_QINT8) {
+ OP_REQUIRES(ctx, input_requested_min_float < 0.0f,
+ errors::InvalidArgument(
+ "If out_type is QINT8, requested_output_max must be "
+ "non negative, got ",
+ input_requested_min_float));
+ }
const float factor = (out_type_ == DT_QINT8) ? 127.0f : 255.0f;
const float requested_min_max =
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/gice/tensorflow.git
git@gitee.com:gice/tensorflow.git
gice
tensorflow
tensorflow
master

搜索帮助