# JAKA-robot-grasping-V1 **Repository Path**: gitDux/jaka-robot-grasping-V1 ## Basic Information - **Project Name**: JAKA-robot-grasping-V1 - **Description**: 基于jaka python API 和 Grasp-net [CVPR 2020] 实现机器人任意物体抓取 - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 5 - **Forks**: 0 - **Created**: 2021-10-24 - **Last Updated**: 2025-04-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [[paper](https://openaccess.thecvf.com/content_CVPR_2020/papers/Fang_GraspNet-1Billion_A_Large-Scale_Benchmark_for_General_Object_Grasping_CVPR_2020_paper.pdf)] [[dataset](https://graspnet.net/)] [[API](https://github.com/graspnet/graspnetAPI)] [[doc](https://graspnetapi.readthedocs.io/en/latest/index.html)]
scene_0114 scene_0116 scene_0117
Top 50 grasps detected by our baseline model.
![teaser](doc/teaser.png) ## Requirements - Python 3 - PyTorch 1.6 - Open3d >=0.8 - TensorBoard 2.3 - NumPy - SciPy - Pillow - tqdm ## Installation Get the code. ```bash git clone https://github.com/graspnet/graspnet-baseline.git cd graspnet-baseline ``` Install packages via Pip. ```bash pip install -r requirements.txt ``` Compile and install pointnet2 operators (code adapted from [votenet](https://github.com/facebookresearch/votenet)). ```bash cd pointnet2 python setup.py install ``` Compile and install knn operator (code adapted from [pytorch_knn_cuda](https://github.com/chrischoy/pytorch_knn_cuda)). ```bash cd knn python setup.py install ``` Install graspnetAPI for evaluation. ```bash git clone https://github.com/graspnet/graspnetAPI.git cd graspnetAPI pip install . ``` ## Tolerance Label Generation Tolerance labels are not included in the original dataset, and need additional generation. Make sure you have downloaded the orginal dataset from [GraspNet](https://graspnet.net/). The generation code is in [dataset/generate_tolerance_label.py](dataset/generate_tolerance_label.py). You can simply generate tolerance label by running the script: (`--dataset_root` and `--num_workers` should be specified according to your settings) ```bash cd dataset sh command_generate_tolerance_label.sh ``` Or you can download the tolerance labels from [Google Drive](https://drive.google.com/file/d/1DcjGGhZIJsxd61719N0iWA7L6vNEK0ci/view?usp=sharing)/[Baidu Pan](https://pan.baidu.com/s/1HN29P-csHavJF-R_wec6SQ) and run: ```bash mv tolerance.tar dataset/ cd dataset tar -xvf tolerance.tar ``` ## Training and Testing Training examples are shown in [command_train.sh](command_train.sh). `--dataset_root`, `--camera` and `--log_dir` should be specified according to your settings. You can use TensorBoard to visualize training process. Testing examples are shown in [command_test.sh](command_test.sh), which contains inference and result evaluation. `--dataset_root`, `--camera`, `--checkpoint_path` and `--dump_dir` should be specified according to your settings. Set `--collision_thresh` to -1 for fast inference. The pretrained weights can be downloaded from: - `checkpoint-rs.tar` [[Google Drive](https://drive.google.com/file/d/1hd0G8LN6tRpi4742XOTEisbTXNZ-1jmk/view?usp=sharing)] [[Baidu Pan](https://pan.baidu.com/s/1Eme60l39tTZrilF0I86R5A)] - `checkpoint-kn.tar` [[Google Drive](https://drive.google.com/file/d/1vK-d0yxwyJwXHYWOtH1bDMoe--uZ2oLX/view?usp=sharing)] [[Baidu Pan](https://pan.baidu.com/s/1QpYzzyID-aG5CgHjPFNB9g)] `checkpoint-rs.tar` and `checkpoint-kn.tar` are trained using RealSense data and Kinect data respectively. ## Demo A demo program is provided for grasp detection and visualization using RGB-D images. You can refer to [command_demo.sh](command_demo.sh) to run the program. `--checkpoint_path` should be specified according to your settings (make sure you have downloaded the pretrained weights). The output should be similar to the following example:
demo_result
__Try your own data__ by modifying `get_and_process_data()` in [demo.py](demo.py). Refer to [doc/example_data/](doc/example_data/) for data preparation. RGB-D images and camera intrinsics are required for inference. `factor_depth` stands for the scale for depth value to be transformed into meters. You can also add a workspace mask for denser output. ## Results Results "In repo" report the model performance with single-view collision detection as post-processing. In evaluation we set `--collision_thresh` to 0.01. Evaluation results on RealSense camera: | | | Seen | | | Similar | | | Novel | | |:--------:|:------:|:----------------:|:----------------:|:------:|:----------------:|:----------------:|:------:|:----------------:|:----------------:| | | __AP__ | AP0.8 | AP0.4 | __AP__ | AP0.8 | AP0.4 | __AP__ | AP0.8 | AP0.4 | | In paper | 27.56 | 33.43 | 16.95 | 26.11 | 34.18 | 14.23 | 10.55 | 11.25 | 3.98 | | In repo | 47.47 | 55.90 | 41.33 | 42.27 | 51.01 | 35.40 | 16.61 | 20.84 | 8.30 | Evaluation results on Kinect camera: | | | Seen | | | Similar | | | Novel | | |:--------:|:------:|:----------------:|:----------------:|:------:|:----------------:|:----------------:|:------:|:----------------:|:----------------:| | | __AP__ | AP0.8 | AP0.4 | __AP__ | AP0.8 | AP0.4 | __AP__ | AP0.8 | AP0.4 | | In paper | 29.88 | 36.19 | 19.31 | 27.84 | 33.19 | 16.62 | 11.51 | 12.92 | 3.56 | | In repo | 42.02 | 49.91 | 35.34 | 37.35 | 44.82 | 30.40 | 12.17 | 15.17 | 5.51 | ## Citation Please cite our paper in your publications if it helps your research: ``` @inproceedings{fang2020graspnet, title={GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping}, author={Fang, Hao-Shu and Wang, Chenxi and Gou, Minghao and Lu, Cewu}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR)}, pages={11444--11453}, year={2020} } ``` ## License All data, labels, code and models belong to the graspnet team, MVIG, SJTU and are freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please drop an email at fhaoshu at gmail_dot_com and cc lucewu at sjtu.edu.cn .