# DeepCTR **Repository Path**: git_mirror/DeepCTR ## Basic Information - **Project Name**: DeepCTR - **Description**: https://github.com/shenweichen/DeepCTR Easy-to-use,Modular and Extendible package of deep-learning based CTR models . - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-15 - **Last Updated**: 2024-04-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DeepCTR [](https://pypi.org/project/deepctr) [](https://pypi.org/project/deepctr) [](https://pepy.tech/project/deepctr) [](https://pypi.org/project/deepctr) [](https://github.com/shenweichen/deepctr/issues) [](https://deepctr-doc.readthedocs.io/)  [](https://codecov.io/gh/shenweichen/DeepCTR) [](https://www.codacy.com/gh/shenweichen/DeepCTR?utm_source=github.com&utm_medium=referral&utm_content=shenweichen/DeepCTR&utm_campaign=Badge_Grade) [](./README.md#DisscussionGroup) [](https://github.com/shenweichen/deepctr/blob/master/LICENSE) DeepCTR is a **Easy-to-use**, **Modular** and **Extendible** package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models.You can use any complex model with `model.fit()` ,and `model.predict()` . - Provide `tf.keras.Model` like interfaces for **quick experiment**. [example](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr) - Provide `tensorflow estimator` interface for **large scale data** and **distributed training**. [example](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr-estimator-with-tfrecord) - It is compatible with both `tf 1.x` and `tf 2.x`. Some related projects: - DeepMatch: https://github.com/shenweichen/DeepMatch - DeepCTR-Torch: https://github.com/shenweichen/DeepCTR-Torch Let's [**Get Started!**](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html)([Chinese Introduction](https://zhuanlan.zhihu.com/p/53231955)) and [welcome to join us!](./CONTRIBUTING.md) ## Models List | Model | Paper | | :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) | | Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) | | Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) | | Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) | | DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) | | Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) | | Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) | | Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) | | Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) | | xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) | | Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) | | AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) | | Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) | | FwFM | [WWW 2018][Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising](https://arxiv.org/pdf/1806.03514.pdf) | | ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) | | FGCNN | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction ](https://arxiv.org/pdf/1904.04447) | | Deep Session Interest Network | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction ](https://arxiv.org/abs/1905.06482) | | FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) | | FLEN | [arxiv 2019][FLEN: Leveraging Field for Scalable CTR Prediction](https://arxiv.org/pdf/1911.04690.pdf) | | BST | [DLP-KDD 2019][Behavior sequence transformer for e-commerce recommendation in Alibaba](https://arxiv.org/pdf/1905.06874.pdf) | | IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) | | DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) | | DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) | | FEFM and DeepFEFM | [arxiv 2020][Field-Embedded Factorization Machines for Click-through rate prediction](https://arxiv.org/abs/2009.09931) | | SharedBottom | [arxiv 2017][An Overview of Multi-Task Learning in Deep Neural Networks](https://arxiv.org/pdf/1706.05098.pdf) | | ESMM | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) | | MMOE | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) | | PLE | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/10.1145/3383313.3412236) | | EDCN | [KDD 2021][Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR Models](https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf) | ## Citation - Weichen Shen. (2017). DeepCTR: Easy-to-use,Modular and Extendible package of deep-learning based CTR models. https://github.com/shenweichen/deepctr. If you find this code useful in your research, please cite it using the following BibTeX: ```bibtex @misc{shen2017deepctr, author = {Weichen Shen}, title = {DeepCTR: Easy-to-use,Modular and Extendible package of deep-learning based CTR models}, year = {2017}, publisher = {GitHub}, journal = {GitHub Repository}, howpublished = {\url{https://github.com/shenweichen/deepctr}}, } ``` ## DisscussionGroup - [Github Discussions](https://github.com/shenweichen/DeepCTR/discussions) - Wechat Discussions |公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)| |:--:|:--:|:--:| | [](https://github.com/shenweichen/AlgoNotes)| [](https://github.com/shenweichen/AlgoNotes)|[](https://t.zsxq.com/026UJEuzv)| ## Main contributors([welcome to join us!](./CONTRIBUTING.md))
![]() Shen Weichen Alibaba Group |
![]() Zan Shuxun Alibaba Group |
![]() Harshit Pande Amazon |
![]() Lai Mincai ByteDance |
![]() Li Zichao ByteDance |
![]() Tan Tingyi Chongqing University |