# pytorch-lightning **Repository Path**: git_mirror/pytorch-lightning ## Basic Information - **Project Name**: pytorch-lightning - **Description**: Pretrain, finetune and deploy AI models on multiple GPUs, TPUs with zero code changes. - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-14 - **Last Updated**: 2025-02-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
Quick start • Examples • PyTorch Lightning • Fabric • Lightning AI • Community • Docs
[](https://pypi.org/project/pytorch-lightning/) [](https://badge.fury.io/py/pytorch-lightning) [](https://pepy.tech/project/pytorch-lightning) [](https://anaconda.org/conda-forge/lightning) [](https://codecov.io/gh/Lightning-AI/pytorch-lightning) [](https://discord.gg/VptPCZkGNa)  [](https://github.com/Lightning-AI/lightning/blob/master/LICENSE)What to change | Resulting Fabric Code (copy me!) |
---|---|
```diff + import lightning as L import torch; import torchvision as tv dataset = tv.datasets.CIFAR10("data", download=True, train=True, transform=tv.transforms.ToTensor()) + fabric = L.Fabric() + fabric.launch() model = tv.models.resnet18() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) - device = "cuda" if torch.cuda.is_available() else "cpu" - model.to(device) + model, optimizer = fabric.setup(model, optimizer) dataloader = torch.utils.data.DataLoader(dataset, batch_size=8) + dataloader = fabric.setup_dataloaders(dataloader) model.train() num_epochs = 10 for epoch in range(num_epochs): for batch in dataloader: inputs, labels = batch - inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, labels) - loss.backward() + fabric.backward(loss) optimizer.step() print(loss.data) ``` | ```Python import lightning as L import torch; import torchvision as tv dataset = tv.datasets.CIFAR10("data", download=True, train=True, transform=tv.transforms.ToTensor()) fabric = L.Fabric() fabric.launch() model = tv.models.resnet18() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) model, optimizer = fabric.setup(model, optimizer) dataloader = torch.utils.data.DataLoader(dataset, batch_size=8) dataloader = fabric.setup_dataloaders(dataloader) model.train() num_epochs = 10 for epoch in range(num_epochs): for batch in dataloader: inputs, labels = batch optimizer.zero_grad() outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, labels) fabric.backward(loss) optimizer.step() print(loss.data) ``` |