# MobilePose **Repository Path**: giteebob/MobilePose ## Basic Information - **Project Name**: MobilePose - **Description**: Light-weight Single Person Pose Estimator - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-01-26 - **Last Updated**: 2022-01-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MobilePose MobilePose is a **Tiny** PyTorch implementation of single person 2D pose estimation framework. The aim is to provide the interface of the training/inference/evaluation, and the dataloader with various data augmentation options. And final trained model can satisfy basic requirements(speed+size+accuracy) for mobile device. Some codes for networks and display are brought from: 1. [pytorch-mobilenet-v2](https://github.com/tonylins/pytorch-mobilenet-v2) 2. [Vanilla FCN, U-Net, SegNet, PSPNet, GCN, DUC](https://github.com/zijundeng/pytorch-semantic-segmentation) 3. [Shufflenet-v2-Pytorch](https://github.com/ericsun99/Shufflenet-v2-Pytorch) 4. [tf-pose-estimation](https://github.com/ildoonet/tf-pose-estimation) 5. [dsntnn](https://github.com/anibali/dsntnn) ## NEWS! - Apr 2021: [Siyuan Pan](https://github.com/pansiyuan123) provides [MNN version](https://market.mnn.zone/s/#/modelmarket/detail/107)! - Mar 2019: Support running on MacBook with decent FPS! - Feb 2019: **ALL** the pretrained model files are avaliable! ## Requirements - Python 3.7 - PyTorch 1.0 - [dsntnn 1.0](https://github.com/anibali/dsntnn) ## Evaluation Results |Model(+DUC+DSNTNN)|Parmas(M)|Flops(G)|AP@0.5:0.95|AP@0.5|AR@0.5:0.95|AR@0.5|Link| |:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |ResNet18|12.26|1.64|**68.2**|93.9|**79.7**|96.7|[51.5M](https://drive.google.com/open?id=17Z1zetIVDI4_8-ZoFgTRsjHtDpwGtjRT)| |MobileNetV2|3.91|0.49|67.5|**94.9**|79.4|**97.1**|[16.6M](https://drive.google.com/open?id=15Ihv1bVQv6_tYTFlECJMNrXEmrrka5g4)| |ShuffleNetV2|2.92|**0.31**|61.5|91.6|74.8|95.5|[12.4M](https://drive.google.com/open?id=184Zg4E6HbbizPFYcELMXCd7mwWXdUd3U)| |SqueezeNet1.1|**2.22**|0.63|58.4|92.1|72.3|95.8|[9.3M](https://drive.google.com/open?id=1RePeiBJHeHvmYTQ5vAUJHC5CstHIBcP0)|