# OpenNMT
**Repository Path**: github_syn/OpenNMT
## Basic Information
- **Project Name**: OpenNMT
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-12-19
- **Last Updated**: 2025-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
**This project is considered obsolete as the Torch framework is no longer maintained. If you are starting a new project, please use an alternative in the OpenNMT family: [OpenNMT-tf](https://github.com/OpenNMT/OpenNMT-tf) (TensorFlow) or [OpenNMT-py](https://github.com/OpenNMT/OpenNMT-py) (PyTorch) depending on your requirements.**
[](https://travis-ci.org/OpenNMT/OpenNMT) [](https://codecov.io/gh/OpenNMT/OpenNMT)
# OpenNMT: Open-Source Neural Machine Translation
[OpenNMT](http://opennmt.net/) is a full-featured, open-source (MIT) neural machine translation system utilizing the [Torch](http://torch.ch) mathematical toolkit.
The system is designed to be simple to use and easy to extend, while
maintaining efficiency and state-of-the-art translation
accuracy. Features include:
* Speed and memory optimizations for high-performance GPU training.
* Simple general-purpose interface, only requires and source/target data files.
* [C++ implementation of the translator](https://github.com/OpenNMT/CTranslate) for easy deployment.
* Extensions to allow other sequence generation tasks such as summarization and image captioning.
## Installation
OpenNMT only requires a Torch installation with few dependencies.
1. [Install Torch](http://torch.ch/docs/getting-started.html)
2. Install additional packages:
```bash
luarocks install tds
luarocks install bit32 # if using LuaJIT
```
For other installation methods including Docker, visit the [documentation](http://opennmt.net/OpenNMT/installation/).
## Quickstart
OpenNMT consists of three commands:
1) Preprocess the data.
```
th preprocess.lua -train_src data/src-train.txt -train_tgt data/tgt-train.txt -valid_src data/src-val.txt -valid_tgt data/tgt-val.txt -save_data data/demo
```
2) Train the model.
```
th train.lua -data data/demo-train.t7 -save_model model
```
3) Translate sentences.
```
th translate.lua -model model_final.t7 -src data/src-test.txt -output pred.txt
```
For more details, visit the [documentation](http://opennmt.net/OpenNMT/).
## Citation
A [technical report](https://arxiv.org/abs/1701.02810) on OpenNMT is available. If you use the system for academic work, please cite:
```
@ARTICLE{2017opennmt,
author = {{Klein}, G. and {Kim}, Y. and {Deng}, Y. and {Senellart}, J. and {Rush}, A.~M.},
title = "{OpenNMT: Open-Source Toolkit for Neural Machine Translation}",
journal = {ArXiv e-prints},
eprint = {1701.02810}
}
```
## Acknowledgments
Our implementation utilizes code from the following:
* [Andrej Karpathy's char-rnn repo](https://github.com/karpathy/char-rnn)
* [Wojciech Zaremba's lstm repo](https://github.com/wojzaremba/lstm)
* [Element rnn library](https://github.com/Element-Research/rnn)
## Additional resources
* [Documentation](http://opennmt.net/OpenNMT)
* [Forum](http://forum.opennmt.net)
* [Gitter channel](https://gitter.im/OpenNMT/openmt)