# OpenNMT **Repository Path**: github_syn/OpenNMT ## Basic Information - **Project Name**: OpenNMT - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-12-19 - **Last Updated**: 2025-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README **This project is considered obsolete as the Torch framework is no longer maintained. If you are starting a new project, please use an alternative in the OpenNMT family: [OpenNMT-tf](https://github.com/OpenNMT/OpenNMT-tf) (TensorFlow) or [OpenNMT-py](https://github.com/OpenNMT/OpenNMT-py) (PyTorch) depending on your requirements.** [![Build Status](https://api.travis-ci.org/OpenNMT/OpenNMT.svg?branch=master)](https://travis-ci.org/OpenNMT/OpenNMT) [![codecov](https://codecov.io/gh/OpenNMT/OpenNMT/branch/master/graph/badge.svg)](https://codecov.io/gh/OpenNMT/OpenNMT) # OpenNMT: Open-Source Neural Machine Translation [OpenNMT](http://opennmt.net/) is a full-featured, open-source (MIT) neural machine translation system utilizing the [Torch](http://torch.ch) mathematical toolkit.
The system is designed to be simple to use and easy to extend, while maintaining efficiency and state-of-the-art translation accuracy. Features include: * Speed and memory optimizations for high-performance GPU training. * Simple general-purpose interface, only requires and source/target data files. * [C++ implementation of the translator](https://github.com/OpenNMT/CTranslate) for easy deployment. * Extensions to allow other sequence generation tasks such as summarization and image captioning. ## Installation OpenNMT only requires a Torch installation with few dependencies. 1. [Install Torch](http://torch.ch/docs/getting-started.html) 2. Install additional packages: ```bash luarocks install tds luarocks install bit32 # if using LuaJIT ``` For other installation methods including Docker, visit the [documentation](http://opennmt.net/OpenNMT/installation/). ## Quickstart OpenNMT consists of three commands: 1) Preprocess the data. ``` th preprocess.lua -train_src data/src-train.txt -train_tgt data/tgt-train.txt -valid_src data/src-val.txt -valid_tgt data/tgt-val.txt -save_data data/demo ``` 2) Train the model. ``` th train.lua -data data/demo-train.t7 -save_model model ``` 3) Translate sentences. ``` th translate.lua -model model_final.t7 -src data/src-test.txt -output pred.txt ``` For more details, visit the [documentation](http://opennmt.net/OpenNMT/). ## Citation A [technical report](https://arxiv.org/abs/1701.02810) on OpenNMT is available. If you use the system for academic work, please cite: ``` @ARTICLE{2017opennmt, author = {{Klein}, G. and {Kim}, Y. and {Deng}, Y. and {Senellart}, J. and {Rush}, A.~M.}, title = "{OpenNMT: Open-Source Toolkit for Neural Machine Translation}", journal = {ArXiv e-prints}, eprint = {1701.02810} } ``` ## Acknowledgments Our implementation utilizes code from the following: * [Andrej Karpathy's char-rnn repo](https://github.com/karpathy/char-rnn) * [Wojciech Zaremba's lstm repo](https://github.com/wojzaremba/lstm) * [Element rnn library](https://github.com/Element-Research/rnn) ## Additional resources * [Documentation](http://opennmt.net/OpenNMT) * [Forum](http://forum.opennmt.net) * [Gitter channel](https://gitter.im/OpenNMT/openmt)