# crnn_plate_recognition **Repository Path**: github_syn/crnn_plate_recognition ## Basic Information - **Project Name**: crnn_plate_recognition - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-04-09 - **Last Updated**: 2025-04-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 车牌识别 **车牌检测+车牌识别 看这里[车牌检测识别](https://github.com/we0091234/Chinese_license_plate_detection_recognition)** **车牌颜色和车牌识别一起训练看这里: [车牌识别+车牌颜色](https://github.com/we0091234/crnn_plate_recognition/tree/plate_color)** 训练的时候 选择相应的cfg 即可选择模型的大小 train.py ``` # construct face related neural networks #cfg =[8,8,16,16,'M',32,32,'M',48,48,'M',64,128] #small model # cfg =[16,16,32,32,'M',64,64,'M',96,96,'M',128,256]#medium model cfg =[32,32,64,64,'M',128,128,'M',196,196,'M',256,256] #big model model = myNet_ocr(num_classes=len(plate_chr),cfg=cfg) ``` ## 环境配置 1. WIN 10 or Ubuntu 16.04 2. **PyTorch > 1.2.0 (may fix ctc loss)**🔥 3. yaml 4. easydict 5. tensorboardX ## 数据 #### 车牌识别数据集CCPD+CRPD 1. 从CCPD和CRPD截下来的车牌小图以及我自己收集的一部分车牌 有需要的话加vx:we0091234 **收费30 介意勿扰** 2. 数据集打上标签,生成train.txt和val.txt ![Image text](images/tmp2E.png) 图片命名如上图:**车牌号_序号.jpg** 然后执行如下命令,得到train.txt和val.txt ``` python plateLabel.py --image_path your/train/img/path/ --label_file datasets/train.txt python plateLabel.py --image_path your/val/img/path/ --label_file datasets/val.txt ``` 数据格式如下: train.txt ``` /mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_ALL/冀BAJ731_3.jpg 5 53 52 60 49 45 43 /mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_ALL/冀BD387U_2454.jpg 5 53 55 45 50 49 70 /mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_ALL/冀BG150C_3.jpg 5 53 58 43 47 42 54 /mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_OTHER_ALL/皖A656V3_8090.jpg 13 52 48 47 48 71 45 /mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_OTHER_ALL/皖C91546_7979.jpg 13 54 51 43 47 46 48 /mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_OTHER_ALL/皖G88950_1540.jpg 13 58 50 50 51 47 42 /mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_OTHER_ALL/皖GX9Y56_2113.jpg 13 58 73 51 74 47 48 ``` 3. 将train.txt val.txt路径写入lib/config/360CC_config.yaml 中 ``` DATASET: DATASET: 360CC ROOT: "" CHAR_FILE: 'lib/dataset/txt/plate2.txt' JSON_FILE: {'train': 'datasets/train.txt', 'val': 'datasets/val.txt'} ``` ## Train ```angular2html python train.py --cfg lib/config/360CC_config.yaml ``` 结果保存再output文件夹中 ## 测试demo ``` python demo.py --model_path saved_model/best.pth --image_path images/test.jpg or your/model/path ``` ![Image text](images/test.jpg) 结果是: ![Image text](images/result.jpg) ## 导出onnx ``` python export.py --weights saved_model/best.pth --save_path saved_model/best.onnx --simplify ``` #### onnx 推理 ``` python onnx_infer.py --onnx_file saved_model/best.onnx --image_path images/test.jpg ``` ## 双层车牌 双层车牌这里采用拼接成单层车牌的方式: python: ``` def get_split_merge(img): h,w,c = img.shape img_upper = img[0:int(5/12*h),:] img_lower = img[int(1/3*h):,:] img_upper = cv2.resize(img_upper,(img_lower.shape[1],img_lower.shape[0])) new_img = np.hstack((img_upper,img_lower)) return new_img ``` c++: ``` cv::Mat get_split_merge(cv::Mat &img) //双层车牌 分割 拼接 { cv::Rect upper_rect_area = cv::Rect(0,0,img.cols,int(5.0/12*img.rows)); cv::Rect lower_rect_area = cv::Rect(0,int(1.0/3*img.rows),img.cols,img.rows-int(1.0/3*img.rows)); cv::Mat img_upper = img(upper_rect_area); cv::Mat img_lower =img(lower_rect_area); cv::resize(img_upper,img_upper,img_lower.size()); cv::Mat out(img_lower.rows,img_lower.cols+img_upper.cols, CV_8UC3, cv::Scalar(114, 114, 114)); img_upper.copyTo(out(cv::Rect(0,0,img_upper.cols,img_upper.rows))); img_lower.copyTo(out(cv::Rect(img_upper.cols,0,img_lower.cols,img_lower.rows))); return out; } ``` ![Image text](image/tmp55DE.png) 通过变换得到 ![Image text](image/new.jpg) ## 训练自己的数据集 1. 修改alphabets.py,修改成你自己的字符集,plateName,plate_chr都要修改,plate_chr 多了一个空的占位符'#' 2. 通过plateLabel.py 生成train.txt, val.txt 3. 训练 ## 数据增强 ``` cd Text-Image-Augmentation-python-master python demo1.py --src_path /mnt/Gu/trainData/test_aug --dst_path /mnt/Gu/trainData/result_aug/ ``` src_path 是数据路径, dst_path是保存的数据路径 **然后把两份数据放到一起进行训练,效果会好很多!** ## References - https://github.com/meijieru/crnn.pytorch - [https://github.com/Sierkinhane/CRNN_Chinese_Characters_Rec](https://github.com/Sierkinhane/CRNN_Chinese_Characters_Rec) #### 联系 **有问题可以提issues 或者加qq群:769809695 询问**