# cudf **Repository Path**: gpu_3/cudf ## Basic Information - **Project Name**: cudf - **Description**: cuDF can now be used as a no-code-change accelerator for pandas - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: branch-25.10 - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-06 - **Last Updated**: 2025-09-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README #
 cuDF - GPU DataFrames
## 📢 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)! cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data. cuDF leverages [libcudf](https://docs.rapids.ai/api/libcudf/stable/), a blazing-fast C++/CUDA dataframe library and the [Apache Arrow](https://arrow.apache.org/) columnar format to provide a GPU-accelerated pandas API. You can import `cudf` directly and use it like `pandas`: ```python import cudf tips_df = cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv") tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100 # display average tip by dining party size print(tips_df.groupby("size").tip_percentage.mean()) ``` Or, you can use cuDF as a no-code-change accelerator for pandas, using [`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas). `cudf.pandas` supports 100% of the pandas API, utilizing cuDF for supported operations and falling back to pandas when needed: ```python %load_ext cudf.pandas # pandas operations now use the GPU! import pandas as pd tips_df = pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv") tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100 # display average tip by dining party size print(tips_df.groupby("size").tip_percentage.mean()) ``` ## Resources - [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab! - [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries. - [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/) - [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/) - [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate. See the [RAPIDS install page](https://docs.rapids.ai/install) for the most up-to-date information and commands for installing cuDF and other RAPIDS packages. ## Installation ### CUDA/GPU requirements * CUDA 12.0+ with a compatible NVIDIA driver * Volta architecture or better (Compute Capability >=7.0) ### Pip cuDF can be installed via `pip` from the NVIDIA Python Package Index. Be sure to select the appropriate cuDF package depending on the major version of CUDA available in your environment: ```bash # CUDA 13 pip install cudf-cu13 # CUDA 12 pip install cudf-cu12 ``` ### Conda cuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel: ```bash # CUDA 13 conda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=13.0 # CUDA 12 conda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=12.9 ``` We also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD of our latest development branch. Note: cuDF is supported only on Linux, and with Python versions 3.10 and later. See the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info. ## Build/Install from Source See build [instructions](CONTRIBUTING.md#setting-up-your-build-environment). ## Contributing Please see our [guide for contributing to cuDF](CONTRIBUTING.md).