# MDvsFA **Repository Path**: guningbo__buaa/MDvsFA ## Basic Information - **Project Name**: MDvsFA - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-25 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MDvsFA PyTorch implementation of ICCV2019 paper Miss Detection vs. False Alarm: Adversarial Learing for Small Object Segmentation in Infrared Images. # Guide 1. Creating the following folders: - training_results: this folder is to contain all the images of evaluation phases, to visualize the performance of model. - test_results: this folder is to contain the images during test phases. - logs: this folder is to contain all logs during training. - saved_models: to save the weight after each epoch. The following command is to create fodler under the root of repository: ```bash mkdir training_results test_results logs saved_models ``` 2. Dataset: The [official implementation](https://github.com/wanghuanphd/MDvsFA_cGAN) offers the dataset, the structure has to be: ``` root data test_gt test_ort training ``` 3. Using following command to train: ```python python train.py ``` all the training parameters have default values. 4. Using following command to test: ```python python test.py ```