# mask_rcnn_ros **Repository Path**: gxdcode/mask_rcnn_ros ## Basic Information - **Project Name**: mask_rcnn_ros - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-05-06 - **Last Updated**: 2024-06-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # The ROS Package of Mask R-CNN for Object Detection and Segmentation This is a ROS package of [Mask R-CNN](https://arxiv.org/abs/1703.06870) algorithm for object detection and segmentation. The package contains ROS node of Mask R-CNN with topic-based ROS interface. Most of core algorithm code was based on [Mask R-CNN implementation by Matterport, Inc. ](https://github.com/matterport/Mask_RCNN) ## Training This repository doesn't contain code for training Mask R-CNN network model. If you want to train the model on your own class definition or dataset, try it on [the upstream reposity](https://github.com/matterport/Mask_RCNN) and give the result weight to `model_path` parameter. ## Requirements * ROS kinetic * TensorFlow 1.3+ * Keras 2.0.8+ * Numpy, skimage, scipy, Pillow, cython, h5py ## ROS Interfaces ### Parameters * `~input: string` Topic name of the input RGB image. Default: `'/camera/rgb/image_raw'` * `~model_path: string` Path to the HDF5 model file. If the model_path is default value and the file doesn't exist, the node automatically downloads the file. Default: `$ROS_HOME/mask_rcnn_coco.h5` * `~visualization: bool` If true, the node publish visualized images to `~visualization` topic. Default: `true` * `~class_names: string[]` Class names to be treated as detection targets. Default: All MS COCO classes. ### Topics Published * `~result: mask_rcnn_ros/Result` Result of detection. See also `Result.msg` for detailed description. * `~visualization: sensor_mgs/Image` Visualized result over an input image. ## Getting Started 1. Clone this repository to your catkin workspace 2. Build workspace and source devel environment 3. Run mask_rcnn node ~~~bash $ rosrun mask_rcnn_ros mask_rcnn_node ~~~ ## Example There is a simple example launch file using [RGB-D SLAM Dataset](https://vision.in.tum.de/data/datasets/rgbd-dataset/download). ~~~bash $ ./scripts/download_freiburg3_rgbd_example_bag.sh $ roslaunch mask_rcnn_ros freiburg3_rgbd_example.launch ~~~ Then RViz window will appear and show result like following: