# ProFOLD **Repository Path**: handsomest/ProFOLD ## Basic Information - **Project Name**: ProFOLD - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-23 - **Last Updated**: 2021-11-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ProFOLD ## About The Project The implementation of the paper "CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction". [Fusong Ju, Jianwei Zhu, Bin Shao, Lupeng Kong, Tie-Yan Liu, Wei-Mou Zheng and Dongbo Bu. CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction. Nature Communications. https://doi.org/10.1038/s41467-021-22869-8](https://www.nature.com/articles/s41467-021-22869-8) ## Getting Started ### Prerequisites Install [PyTorch 1.4+](https://pytorch.org/), [PyRosetta](http://www.pyrosetta.org/), [python 3.7+](https://www.python.org/downloads/) ### Installation 1. Clone the repo ```sh git clone https://github.com/fusong-ju/ProFOLD.git ``` 2. Install python packages ```sh cd ProFOLD pip install -r requirements.txt ``` ## Usage 1. Generate `aln` format MSA for a given target sequence 2. Run ProFOLD ```sh run_ProFOLD.sh ``` ## Example ```sh cd example ./run_example.sh ``` ## License Distributed under the MIT License. See `LICENSE` for more information.