# pytorch-rbm **Repository Path**: haohan1997/pytorch-rbm ## Basic Information - **Project Name**: pytorch-rbm - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-04-11 - **Last Updated**: 2024-01-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Restricted Boltzmann Machines (RBMs) in PyTorch > **Author:** [Gabriel Bianconi](http://www.gabrielbianconi.com/) ## Overview This project implements Restricted Boltzmann Machines (RBMs) using PyTorch (see `rbm.py`). Our implementation includes momentum, weight decay, L2 regularization, and CD-*k* contrastive divergence. We also provide support for CPU and GPU (CUDA) calculations. In addition, we provide an example file applying our model to the MNIST dataset (see `mnist_dataset.py`). The example trains an RBM, uses the trained model to extract features from the images, and finally uses a SciPy-based logistic regression for classification. It achieves 92.8% classification accuracy (this is obviously not a cutting-edge model).