# FNet **Repository Path**: hazdzz/FNet ## Basic Information - **Project Name**: FNet - **Description**: The PyTorch implementation of FNet. - **Primary Language**: Python - **License**: BSD-3-Clause - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-06-27 - **Last Updated**: 2024-06-29 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # FNet ## About The PyTorch implementation of FNet from the paper [*FNet: Mixing Tokens with Fourier Transforms*](). ## Citation ``` @inproceedings{lee-thorp-etal-2022-fnet, title = {FNet: Mixing Tokens with Fourier Transforms}, author = {Lee-Thorp, James and Ainslie, Joshua and Eckstein, Ilya and Ontanon, Santiago}, booktitle = {Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, month = {07}, year = {2022}, publisher = {Association for Computational Linguistics}, pages = {4296--4313} } ``` ## Datasets 1. LRA: https://mega.nz/file/sdcU3RKR#Skl5HomJJldPBqI7vfLlSAX8VA0XKWiQSPX1E09dwbk ## Training Steps 1. Create a data folder: ```console mkdir data ``` 2. Download the dataset compressed archive ```console wget $URL ``` 3. Decompress the dataset compressed archive and put the contents into the data folder ```console unzip $dataset.zip mv $datast ./data/$datast ``` 4. Run the main file ```console python $dataset_main.py --task="$task" ``` ## Requirements To install requirements: ```console pip3 install -r requirements.txt