# FastVLM-1.5B-int8 **Repository Path**: hf-models/FastVLM-1.5B-int8 ## Basic Information - **Project Name**: FastVLM-1.5B-int8 - **Description**: Mirror of https://huggingface.co/apple/FastVLM-1.5B-int8 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-08-30 - **Last Updated**: 2025-08-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README --- license: apple-amlr license_name: apple-ascl license_link: https://github.com/apple/ml-fastvlm/blob/main/LICENSE_MODEL library_name: ml-fastvlm --- # FastVLM: Efficient Vision Encoding for Vision Language Models FastVLM was introduced in **[FastVLM: Efficient Vision Encoding for Vision Language Models](https://www.arxiv.org/abs/2412.13303). (CVPR 2025)** [//]: # (![FastViTHD Performance](acc_vs_latency_qwen-2.png))

Accuracy vs latency figure.

### Highlights * We introduce FastViTHD, a novel hybrid vision encoder designed to output fewer tokens and significantly reduce encoding time for high-resolution images. * Our smallest variant outperforms LLaVA-OneVision-0.5B with 85x faster Time-to-First-Token (TTFT) and 3.4x smaller vision encoder. * Our larger variants using Qwen2-7B LLM outperform recent works like Cambrian-1-8B while using a single image encoder with a 7.9x faster TTFT. ### Evaluations | Benchmark | FastVLM-0.5B | FastVLM-1.5B | FastVLM-7B | |:--------------|:------------:|:------------:|:----------:| | Ai2D | 68.0 | 77.4 | 83.6 | | ScienceQA | 85.2 | 94.4 | 96.7 | | MMMU | 33.9 | 37.8 | 45.4 | | VQAv2 | 76.3 | 79.1 | 80.8 | | ChartQA | 76.0 | 80.1 | 85.0 | | TextVQA | 64.5 | 70.4 | 74.9 | | InfoVQA | 46.4 | 59.7 | 75.8 | | DocVQA | 82.5 | 88.3 | 93.2 | | OCRBench | 63.9 | 70.2 | 73.1 | | RealWorldQA | 56.1 | 61.2 | 67.2 | | SeedBench-Img | 71.0 | 74.2 | 75.4 | ### Usage Example The model has been exported to run with MLX. Follow the instructions in the official repository to use it in an iOS or macOS app. ## Citation If you found this model useful, please cite the following paper: ``` @InProceedings{fastvlm2025, author = {Pavan Kumar Anasosalu Vasu, Fartash Faghri, Chun-Liang Li, Cem Koc, Nate True, Albert Antony, Gokul Santhanam, James Gabriel, Peter Grasch, Oncel Tuzel, Hadi Pouransari}, title = {FastVLM: Efficient Vision Encoding for Vision Language Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2025}, } ```