# neural_factorization_machine **Repository Path**: hjz_666/neural_factorization_machine ## Basic Information - **Project Name**: neural_factorization_machine - **Description**: TenforFlow Implementation of Neural Factorization Machine - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-03-12 - **Last Updated**: 2021-03-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Neural Factorization Machines This is our implementation for the paper: Xiangnan He and Tat-Seng Chua (2017). [Neural Factorization Machines for Sparse Predictive Analytics.](http://www.comp.nus.edu.sg/~xiangnan/papers/sigir17-nfm.pdf) In Proceedings of SIGIR '17, Shinjuku, Tokyo, Japan, August 07-11, 2017. We have additionally released our TensorFlow implementation of Factorization Machines under our proposed neural network framework. **Please cite our SIGIR'17 paper if you use our codes. Thanks!** Author: Dr. Xiangnan He (http://www.comp.nus.edu.sg/~xiangnan/) ## Example to run the codes. ``` python NeuralFM.py --dataset frappe --hidden_factor 64 --layers [64] --keep_prob [0.8,0.5] --loss_type square_loss --activation relu --pretrain 0 --optimizer AdagradOptimizer --lr 0.05 --batch_norm 1 --verbose 1 --early_stop 1 --epoch 200 ``` The instruction of commands has been clearly stated in the codes (see the parse_args function). The current implementation supports two tasks: regression and binary classification. The regression task optimizes RMSE, and the binary classification task optimizes Log Loss. ### Dataset We use the same input format as the LibFM toolkit (http://www.libfm.org/). Split the data to train/test/validation files to run the codes directly (examples see data/frappe/). Last Update Date: May 11, 2017