Ai
1 Star 0 Fork 1

鹤鸣清风/grnn

forked from zhanghy/grnn 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
main.py 3.85 KB
一键复制 编辑 原始数据 按行查看 历史
xxArbiter 提交于 2018-08-24 20:16 +08:00 . change
import argparse
import random
import datetime
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import numpy as np
from dataset import trafficDataLoader
from model import GRNN
def getTime(begin, end):
timeDelta = end - begin
return '%d h %d m %d.%ds' % (timeDelta.seconds // 3600, (timeDelta.seconds%3600) // 60, timeDelta.seconds % 60, timeDelta.microseconds)
timStart = datetime.datetime.now()
parser = argparse.ArgumentParser()
parser.add_argument('--taskID', type=int, default=1, help='traffic prediction task id')
parser.add_argument('--batchSize', type=int, default=1, help='input batch size')
parser.add_argument('--dimHidden', type=int, default=32, help='GRNN hidden state size')
parser.add_argument('--truncate', type=int, default=144, help='BPTT length for GRNN')
parser.add_argument('--nIter', type=int, default=2, help='number of epochs to train')
parser.add_argument('--lr', type=float, default=0.01, help='learning rate')
parser.add_argument('--cuda', action='store_true', help='enables cuda')
parser.add_argument('--verbal', action='store_true', help='print training info or not')
parser.add_argument('--manualSeed', type=int, help='manual seed')
opt = parser.parse_args()
print(opt)
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.cuda:
torch.cuda.manual_seed_all(opt.manualSeed)
def main(opt):
dataLoader = trafficDataLoader(opt.taskID)
data = np.transpose(dataLoader.data) # [T, n]
A = dataLoader.A
opt.nNode = dataLoader.nNode
A = A + np.eye(opt.nNode)
opt.dimFeature = 1
#--------TEST---------
#data = data[:, 0]
#data = data[:, np.newaxis]
#A = np.array([1.])
#A = A[:, np.newaxis]
#opt.nNode = 1
#------TEST END-------
data = torch.from_numpy(data[np.newaxis, :, :, np.newaxis]) # [b, T, n, d]
A = torch.from_numpy(A[np.newaxis, :, :]) # [b, n, n]
net = GRNN(opt)
net.double()
print(net)
criterion = nn.MSELoss()
if opt.cuda:
net.cuda()
criterion.cuda()
data = data.cuda()
A = A.cuda()
optimizer = optim.Adam(net.parameters(), lr=opt.lr)
plt.figure(1, figsize=(12, 5))
plt.ion
hState = torch.randn(opt.batchSize, opt.dimHidden, opt.nNode).double()
yLastPred = 0
for t in range(data.size(1) - opt.truncate):
x = data[:, t:(t + opt.truncate), :, :]
y = data[:, (t + 1):(t + opt.truncate + 1), :, :]
for i in range(opt.nIter):
process = '[Log] %d propogation, %d epoch. ' % (t + 1, i + 1)
timStamp = datetime.datetime.now()
prediction, hNew = net(x, hState, A)
print(process + 'Forward used: %s.' % getTime(timStamp, datetime.datetime.now()))
hState = hState.data
loss = criterion(prediction, y)
optimizer.zero_grad()
timStamp = datetime.datetime.now()
loss.backward()
print(process + 'Backward used: %s.' % getTime(timStamp, datetime.datetime.now()))
optimizer.step()
_, hState = net.propogator(x[:, 0, :, :], hState, A)
hState = hState.data
if t == 0:
plt.plot([v for v in range(opt.truncate)], x[:, :, 0, :].data.numpy().flatten(), 'r-')
plt.plot([v + 1 for v in range(opt.truncate)], prediction[:, :, 0, :].data.numpy().flatten(), 'b-')
else:
plt.plot([t + opt.truncate - 2, t + opt.truncate - 1], x[:, -2:, 0, :].data.numpy().flatten(), 'r-')
plt.plot([t + opt.truncate - 1, t + opt.truncate], [yLastPred, prediction[0, -1, 0, 0]], 'b-')
plt.draw()
plt.pause(0.5)
yLastPred = prediction[0, -1, 0, 0]
plt.ioff()
plt.show()
if __name__ == "__main__":
main(opt)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/hmqf/grnn.git
git@gitee.com:hmqf/grnn.git
hmqf
grnn
grnn
master

搜索帮助