# detr3d **Repository Path**: hongdachen/detr3d ## Basic Information - **Project Name**: detr3d - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-02 - **Last Updated**: 2023-11-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D. ### Prerequisite 1. mmcv (https://github.com/open-mmlab/mmcv) 2. mmdet (https://github.com/open-mmlab/mmdetection) 3. mmseg (https://github.com/open-mmlab/mmsegmentation) 4. mmdet3d (https://github.com/open-mmlab/mmdetection3d) ### Data 1. Follow the mmdet3d to process the data. ### Train 1. Downloads the [pretrained backbone weights](https://drive.google.com/drive/folders/1h5bDg7Oh9hKvkFL-dRhu5-ahrEp2lRNN?usp=sharing) to pretrained/ 2. For example, to train Object-DGCNN with pillar on 8 GPUs, please use `tools/dist_train.sh projects/configs/obj_dgcnn/pillar.py 8` ### Evaluation using pretrained models 1. Download the weights accordingly. | Backbone | mAP | NDS | Download | | :---------: | :----: |:----: | :------: | |[DETR3D, ResNet101 w/ DCN](./projects/configs/detr3d/detr3d_res101_gridmask.py)|34.7|42.2|[model](https://drive.google.com/file/d/1YWX-jIS6fxG5_JKUBNVcZtsPtShdjE4O/view?usp=sharing) | [log](https://drive.google.com/file/d/1uvrf42seV4XbWtir-2XjrdGUZ2Qbykid/view?usp=sharing)| |[above, + CBGS](./projects/configs/detr3d/detr3d_res101_gridmask_cbgs.py)|34.9|43.4|[model](https://drive.google.com/file/d/1sXPFiA18K9OMh48wkk9dF1MxvBDUCj2t/view?usp=sharing) | [log](https://drive.google.com/file/d/1NJNggvFGqA423usKanqbsZVE_CzF4ltT/view?usp=sharing)| |[DETR3D, VoVNet on trainval, evaluation on test set](./projects/configs/detr3d/detr3d_vovnet_gridmask_det_final_trainval_cbgs.py)| 41.2 | 47.9 |[model](https://drive.google.com/file/d/1d5FaqoBdUH6dQC3hBKEZLcqbvWK0p9Zv/view?usp=sharing) | [log](https://drive.google.com/file/d/1ONEMm_2W9MZAutjQk1UzaqRywz5PMk3p/view?usp=sharing)| | Backbone | mAP | NDS | Download | | :---------: | :----: |:----: | :------: | |[Object DGCNN, pillar](./projects/configs/obj_dgcnn/pillar.py)|53.2|62.8|[model](https://drive.google.com/file/d/1nd6-PPgdb2b2Bi3W8XPsXPIo2aXn5SO8/view?usp=sharing) | [log](https://drive.google.com/file/d/1A98dWp7SBOdMpo1fHtirwfARvpE38KOn/view?usp=sharing)| |[Object DGCNN, voxel](./projects/configs/obj_dgcnn/voxel.py)|58.6|66.0|[model](https://drive.google.com/file/d/1zwUue39W0cAP6lrPxC1Dbq_gqWoSiJUX/view?usp=sharing) | [log](https://drive.google.com/file/d/1pjRMW2ffYdtL_vOYGFcyg4xJImbT7M2p/view?usp=sharing)| 2. To test, use `tools/dist_test.sh projects/configs/obj_dgcnn/pillar_cosine.py /path/to/ckpt 8 --eval=bbox` If you find this repo useful for your research, please consider citing the papers ``` @inproceedings{ obj-dgcnn, title={Object DGCNN: 3D Object Detection using Dynamic Graphs}, author={Wang, Yue and Solomon, Justin M.}, booktitle={2021 Conference on Neural Information Processing Systems ({NeurIPS})}, year={2021} } ``` ``` @inproceedings{ detr3d, title={DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries}, author={Wang, Yue and Guizilini, Vitor and Zhang, Tianyuan and Wang, Yilun and Zhao, Hang and and Solomon, Justin M.}, booktitle={The Conference on Robot Learning ({CoRL})}, year={2021} } ```