# DeepSeek-RAG-ChatBot1 **Repository Path**: hylan_woo/deep-seek-rag-chat-bot1 ## Basic Information - **Project Name**: DeepSeek-RAG-ChatBot1 - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-03-04 - **Last Updated**: 2025-03-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ### 🚀 **DeepSeek RAG Chatbot** **(100% Free, Private (No Internet), and Local PC Installation)** 🔥 **DeepSeek RAG = The Ultimate RAG Stack!** This chatbot enables **fast, accurate, and explainable retrieval of information** from PDFs, DOCX, and TXT files using **DeepSeek-7B**, **FAISS** and **Chat History Integration**. --- ## **🛠️ Installation & Setup** ### **1️⃣ Clone the Repository & Install Dependencies** ```bash git clone https://github.com/AhmadHammad21/DeepSeek-RAG-ChatBot cd DeepSeek-RAG-ChatBot # Windows python -m venv venv # Linux python3 -m venv venv # Windows venv/Scripts/activate # Linux source venv/bin/activate pip install -r requirements.txt ``` ### **2️⃣ Download & Set Up Ollama** on linux curl -fsSL https://ollama.com/install.sh | sh Ollama is required to run **DeepSeek-7B** and **Nomic Embeddings** locally. 🔗 **Download Ollama** → [https://ollama.com/](https://ollama.com/) Then, pull the required models: ```bash ollama pull deepseek-r1:7b or ollama pull deepseek-r1:14b ollama pull nomic-embed-text ``` ### **3️⃣ Run the Chatbot** ```bash streamlit run app.py ``` --- ## **📌 How It Works** 1. **Upload Documents:** Add your PDFs, DOCX, or TXT files. 2. **Hybrid Retrieval:** Using *FAISS** to fetch the most relevant text. 3. **DeepSeek-7B Generation:** Produces answers based on the best-matched document chunks. ## Enhancements: - Add Logging, Exceptions. - Add Tests - Do docker - Make it handle other formats such as (docx, txt, PNG) not just PDFs - NOMICS - Neural Reranking - HyDE - GraphRAG - Chat Memory