# Awesome-Privacy-Computing **Repository Path**: hyperchain/Awesome-Privacy-Computing ## Basic Information - **Project Name**: Awesome-Privacy-Computing - **Description**: 隐私计算领域相关材料汇总 - **Primary Language**: 其他 - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: https://www.primihub.com/ - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 11 - **Created**: 2023-03-10 - **Last Updated**: 2023-03-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Awesome Privacy Computing # 1 Secure Multiparty Computation (SMPC) ### 1.1 Primitive #### 1.1.1 Oblivious Transfer (OT) - [Precomputing Oblivious Transfer, CRYPTO'95](https://link.springer.com/content/pdf/10.1007%2F3-540-44750-4_8.pdf) - [Efficient Oblivious Transfer Protocols, SODA'01](https://dl.acm.org/doi/10.5555/365411.365502) - IKNP03: [Extending Oblivious Transfers Efficiently, CRYPTO'03](http://link.springer.com/10.1007/978-3-540-45146-4_9) - ALSZ13: [More Efficient Oblivious Transfer and Extensions for Faster Secure Computation, CCS'13](https://eprint.iacr.org/2013/552.pdf), [slide](https://www.cs.cornell.edu/~asharov/slides/ALSZ13.pdf) - KK13: [Improved OT Extension for Transferring Short Secrets, CRYPTO'13](https://eprint.iacr.org/2013/491.pdf) - KOS15: [Actively Secure OT Extension with Optimal Overhead, CRYPTO'15](https://eprint.iacr.org/2015/546.pdf) - [MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer, CCS'16](https://eprint.iacr.org/2016/505.pdf) - [Fast Actively Secure OT Extension for Short Secrets, NDSS'17](http://arxiv.org/abs/1911.08834), [slide](https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_04B-1-suresh-slides.pdf), [video](https://youtu.be/urV3ljX-DqQ) - [Efficient Pseudorandom Correlation Generators: Silent OT Extension and More, CRYPTO'19](https://eprint.iacr.org/2019/448.pdf) - [Efficient two-round OT extension and silent non-interactive secure computation, CCS'19](https://eprint.iacr.org/2019/1159.pdf) - [Ferret: Fast Extension for Correlated OT with Small Communication, CCS'20](https://eprint.iacr.org/2020/924.pdf) - [Silver: Silent VOLE and Oblivious Transfer from Hardness of Decoding Structured LDPC Codes, CRYPTO'21](https://eprint.iacr.org/2021/1150.pdf) #### 1.1.2 Garbled Circuit - [Protocols for Secure Computations (Extended Abstract), FOCS'82](https://crysp.uwaterloo.ca/courses/pet/F11/cache/www.cs.wisc.edu/areas/sec/yao1982-ocr.pdf) - [How to generate and exchange secrets, FOCS'86](https://dl.acm.org/doi/pdf/10.1145/266420.266424) - [Improved Garbled Circuit: Free XOR Gates and Applications, ICALP'08](http://www.cs.toronto.edu/~vlad/papers/XOR_ICALP08.pdf) - [FairplayMP – A System for Secure Multi-Party Computation, CCS'08](https://www.cs.huji.ac.il/~noam/FairplayMP.pdf) - [Secure Two-Party Computation Is Practical, ASIACRYPT'09](https://eprint.iacr.org/2009/314.pdf) - [Foundations of Garbled Circuits, CCS'12](https://eprint.iacr.org/2012/265.pdf) - [FleXOR: Flexible Garbling for XOR Gates That Beats Free-XOR, CRYPTO'14](https://eprint.iacr.org/2014/460.pdf) - [Two Halves Make a Whole: Reducing Data Transfer in Garbled Circuits using Half Gates, EUROCRYPT'15](https://eprint.iacr.org/2014/756.pdf) - MRZ15: [Fast and Secure Three-party Computation: The Garbled Circuit Approach, CCS'15](https://eprint.iacr.org/2015/931.pdf) - [Three Halves Make a Whole? Beating the Half-Gates Lower Bound for Garbled Circuits, CRYPTO'21](https://eprint.iacr.org/2021/749.pdf) #### 1.1.3 Arithmetic/Boolean Circuit - [GMW: How to play ANY mental game, STOC'87](https://www.researchgate.net/publication/234778924_How_to_play_ANY_mental_game/link/0deec5232112523fc5000000/download) - [Multiparty Computation from Somewhat Homomorphic Encryption](https://eprint.iacr.org/2011/535.pdf) - [Practical Covertly Secure MPC for Dishonest Majority Or: Breaking the SPDZ Limits](https://eprint.iacr.org/2012/642.pdf) - [SPDZ2k: Efficient MPC mod 2k for Dishonest Majority](https://eprint.iacr.org/2018/482.pdf) - [ATLAS: Efficient and Scalable MPC in the Honest Majority Setting, CRYPTO'21](https://eprint.iacr.org/2021/833) - [The Cost of IEEE Arithmetic in Secure Computation, LatinCrypt'21](https://eprint.iacr.org/2021/054) - [Fast Fully Secure Multi-Party Computation over Any Ring with Two-Thirds Honest Majority, CCS'22](https://eprint.iacr.org/2022/623) - [A Framework for Constructing Fast MPC over Arithmetic Circuits with Malicious Adversaries and an Honest-Majority, CCS'17](https://eprint.iacr.org/2017/816.pdf) - [Overdrive^2k: Making SPDZ Great Again, Eurocrypto'18](https://eprint.iacr.org/2017/1230) - [Scalable and unconditionally secure multiparty computation, Crypto'07](https://www.iacr.org/archive/crypto2007/46220565/46220565.pdf) - [Sharemind: A framework for fast privacy-preserving computations, ESORICS'08](https://link.springer.com/chapter/10.1007/978-3-540-88313-5_13) - [Fast large-scale honest-majority MPC for malicious adversaries, Crypto'18](https://eprint.iacr.org/2018/570) - [High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority, CCS'16](https://dl.acm.org/citation.cfm?id=2978331) - [High-throughput secure three-party computation for malicious adversaries and an honest majority, Crypto'17](https://eprint.iacr.org/2016/944.pdf) #### 1.1.5 A/B/Y Shares Conversion - [ABY – A Framework for Effificient Mixed-Protocol Secure Two-Party Computation, NDSS'15](https://encrypto.de/papers/DSZ15.pdf) - [ABY3 : A Mixed Protocol Framework for Machine Learning, CCS'18](https://eprint.iacr.org/2018/403.pdf) - [Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning, NDSS'20](https://eprint.iacr.org/2019/1315) - [MP-SPDZ: A versatile framework for multi-party computation, CCS'20](https://eprint.iacr.org/2020/521.pdf) - [ABY2.0: Improved Mixed-Protocol Secure Two-Party Computation, USENIX Security'21](https://eprint.iacr.org/2020/1225.pdf) - [MOTION – A Framework for Mixed-Protocol Multi-Party Computation, TOPS'22](https://eprint.iacr.org/2020/1137) - [Tetrad: Actively Secure 4PC for Secure Training and Inference, NDSS'22](https://arxiv.org/abs/2106.02850) - [Improved primitives for mpc over mixed arithmetic-binary circuits, CRYPTO'20](https://eprint.iacr.org/2020/338.pdf) #### 1.1.6 PSI - [Efficient Batched Oblivious PRF with Applications to Private Set Intersection, CCS'16](https://eprint.iacr.org/2016/799.pdf), [code: BaRK-OPRF](https://github.com/osu-crypto/BaRK-OPRF) - [Actively Secure 1-out-of-N OT Extension with Application to Private Set Intersection, CT-RSA'17](https://eprint.iacr.org/2016/933.pdf) - [SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension, CRYPTO'19](https://eprint.iacr.org/2019/634.pdf) - [PSI from PaXoS: Fast, Malicious Private Set Intersection, EUROCRYPT'20](https://eprint.iacr.org/2020/193.pdf) - [VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE, EUROCRYPT'21](https://eprint.iacr.org/2021/266.pdf) - [LibPSI](https://github.com/osu-crypto/libPSI) - [PSI](https://github.com/encryptogroup/PSI), [2014/447](https://eprint.iacr.org/2014/447). #### 1.1.7 Multiparty ECDSA signing - [Blockchain-Crypto-MPC](https://github.com/unbound-tech/blockchain-crypto-mpc), [CCS'18](https://eprint.iacr.org/2018/987) - [MPECDSA](https://gitlab.com/neucrypt/mpecdsa), [S&P'19](https://eprint.iacr.org/2019/523.pdf) ## 1.2 Survey - Yehuda Lindell. [Secure Multiparty Computation (MPC)](https://eprint.iacr.org/2020/300.pdf) - Yehuda Lindell. [How to Simulate It - A Tutorial on the Simulation Proof Technique](https://eprint.iacr.org/2016/046.pdf) - Manoj Prabhakaran and Amit Sahai (Eds.) [Secure Multi-Party Computation](http://ebooks.iospress.com/volume/secure-multi-party-computation) ## 1.3 Books - [A Pragmatic Introduction to Secure Multi-Party Computation](https://securecomputation.org/) - [Applications of Secure Multiparty Computation](http://ebooks.iospress.nl/volume/applications-of-secure-multiparty-computation) - [Efficient Secure Two-Party Protocols](https://www.springer.com/us/book/9783642143021) - [Secure Multiparty Computation and Secret Sharing](http://www.cambridge.org/dk/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB) - [Foundations of Cryptography Vol. 2 ](http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html) - [Engineering Secure Two-Party Computation Protocols ](https://www.sites.google.com/site/thomaschneider/publications/engineeringsfebook) ## 1.4 Courses - [Cryptographic Computing Course](http://orlandi.dk/crycom) - [FHE-MPC Advanced Grad Course](https://homes.esat.kuleuven.be/~nsmart/FHE-MPC/) - [Secure Computation](http://drona.csa.iisc.ernet.in/~arpita/SecureComputation15.html) - [Secure Multi-Party Computation at Scale](https://piazza.com/bu/fall2017/cs591v1/home) - [The 1st BIU Winter School on Secure Computation and Efficiency](https://cyber.biu.ac.il/event/the-1st-biu-winter-school/) - [The 5th BIU Winter School on Advances in Practical Multiparty Computation](https://cyber.biu.ac.il/event/the-5th-biu-winter-school/) - [The Universal Composability Framework](https://m.youtube.com/playlist?list=PLqc9MPlwib9nSuyH4oUIwPsyDiZ4bwuEE) # 1.5 Open Source Framework - [ABY](https://github.com/encryptogroup/ABY), [NDSS'15](http://encrypto.de/papers/DSZ15.pdf). - [ABY3](https://github.com/ladnir/aby3), [CCS'18](https://eprint.iacr.org/2018/403.pdf), [2019/518](https://eprint.iacr.org/2019/518.pdf). - [BatchDualEx](https://github.com/osu-crypto/batchDualEx), eprint: [2016/632](https://eprint.iacr.org/2016/632). - [CrypTen](https://github.com/facebookresearch/CrypTen), [link](https://crypten.ai/) - [EMP-toolkit](https://github.com/emp-toolkit), (emp-[ag2pc|m2pc|agmpc]) | eprint: [2017/189](https://eprint.iacr.org/2017/189), [2016/762](https://eprint.iacr.org/2016/762), [2017/030](https://eprint.iacr.org/2017/030). - [Fancy-Garbling](https://github.com/spaceships/fancy-garbling), [2016/969](https://eprint.iacr.org/2016/969). - [FRESCO](http://fresco.readthedocs.io/en/latest/) , [Practice'15](http://practice-project.eu/downloads/publications/D22.1-State-of-the-art-analysis-PU-V1.1.pdf). - [HoneyBadgerMPC](https://github.com/initc3/HoneyBadgerMPC) - [JIFF](https://github.com/multiparty/jiff/), [link](https://multiparty.org/jiff/). - [MP-SPDZ](https://github.com/data61/MP-SPDZ), [documentation](https://mp-spdz.readthedocs.io/en/latest/) | eprint: [2020/512](https://eprint.iacr.org/2020/521) - [MPyC](https://www.win.tue.nl/~berry/mpyc/), [TPMPC'18](https://www.win.tue.nl/~berry/mpyc/TPMPC2018.pdf). - [Obliv-C](http://oblivc.org/), [2015/1153](http://eprint.iacr.org/2015/1153). - [SCALE-MAMBA](https://homes.esat.kuleuven.be/~nsmart/SCALE/), [link](https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf). - [Sharemind](https://sharemind.cyber.ee/), [Cyber'13](https://cyber.ee/research/theses/roman_jagomagis_msc.pdf). - [swanky](https://github.com/GaloisInc/swanky), [Tf-encrypted](https://github.com/mortendahl/tf-encrypted/) # 2 Federated Learning (FL) * [Privacy-Preserving Deep Learning, CCS'15](https://dl.acm.org/citation.cfm?id=2813687) * [Practical Secure Aggregation for Privacy Preserving Machine Learning, CCS'17](https://eprint.iacr.org/2017/281.pdf) * [Privacy-Preserving Deep Learning via Additively Homomorphic Encryption, TIFS'17](https://ieeexplore.ieee.org/document/8241854) * [NIKE-based Fast Privacy-preserving High-dimensional Data Aggregation for Mobile Devices, CACR'18](http://cacr.uwaterloo.ca/techreports/2018/cacr2018-10.pdf) * [PrivFL: Practical Privacy-preserving Federated Regressions on High-dimensional Data over Mobile Networks, CCSW'19](https://eprint.iacr.org/2019/979.pdf) * [VerifyNet: Secure and verifiable federated learning, TIFS'19](https://ieeexplore.ieee.org/abstract/document/8765347) * [PrivColl: Practical Privacy-Preserving Collaborative Machine Learning](https://link.springer.com/chapter/10.1007/978-3-030-58951-6_20) * [NPMML: A Framework for Non-interactive Privacy-preserving Multi-party Machine Learning, TDSC'20](https://ieeexplore.ieee.org/abstract/document/8981947) * [SAFER: Sparse secure Aggregation for FEderated leaRning](https://arxiv.org/abs/2007.14861) * [Secure Byzantine-Robust Machine Learning](https://arxiv.org/abs/2006.04747) * [Secure Single-Server Aggregation with (Poly)Logarithmic Overhead, CCS'20](https://eprint.iacr.org/2020/704.pdf) * [Batchcrypt: Efficient homomorphic encryption for cross-silo federated learning, USENIX ATC'21](https://www.usenix.org/conference/atc20/presentation/zhang-chengliang) * [FedSel: Federated SGD under Local Differential Privacy with Top-k Dimension Selection, DASFAA'20](https://arxiv.org/abs/2003.10637) * [FLGUARD: Secure and Private Federated Learning, Cryptology Eprint'21](https://eprint.iacr.org/2021/025) * [Biscotti: A Blockchain System for Private and Secure Federated Learning, TPDS'21](https://ieeexplore.ieee.org/document/9292450) * [POSEIDON: Privacy-Preserving Federated Neural Network Learning, NDSS'21](https://arxiv.org/abs/2009.00349) # 3 Trusted Execution Environment (TEE) # 4 Homomorphic Encryption (HE) ## FHE Libraries Libraries that can be used to implement applications using (Fully) Homomorphic Encryption. - [Microsoft SEAL](https://github.com/microsoft/SEAL) - C++ FHE library implementing BFV and CKKS schemes. - [HEAAN](https://github.com/snucrypto/HEAAN) - Scheme with native support for fixed point approximate arithmetic. - [HElib](https://github.com/HomEnc/HElib) - BGV scheme with bootstrapping and the Approximate Number CKKS scheme. - [lattigo](https://github.com/ldsec/lattigo) - Go library for lattice-based crypto that implements various schemes. - [PALISADE](https://palisade-crypto.org/software-library) - lattice encryption library. - [tfhe](https://github.com/tfhe/tfhe) - Faster fully HE: Bootstrapping in less than 0.1 seconds. - [FHEW](https://github.com/lducas/FHEW) - A Fully HE library based on [_FHEW: Bootstrapping Homomorphic Encryption in less than a second_](https://eprint.iacr.org/2014/816). - [concrete](https://github.com/zama-ai/concrete) - Rust FHE library that implements Zama's variant of TFHE. - [Cupcake](https://github.com/facebookresearch/Cupcake) - Facebook's Rust library for the (additive version of the) Fan-Vercauteren scheme. ## FHE Applications - [OpenMined](https://github.com/OpenMined) - Decentralized data ownership & intelligence based on HE and deep / federated learning. - [KotlinSyft](https://github.com/OpenMined/KotlinSyft) - Kotlin library for the Android part of the OpenMined's open-source ecosystem. - [PySyft](https://github.com/OpenMined/PySyft) - Python library for the server/IoT part of the OpenMined's open-source ecosystem. - [SwiftSyft](https://github.com/OpenMined/SwiftSyft) - Swift library for the iOS part of the OpenMined's open-source ecosystem. - [syft.js](https://github.com/OpenMined/syft.js) - JavaScript library for the web part of the OpenMined's open-source ecosystem. - [Rosetta](https://github.com/LatticeX-Foundation/Rosetta) - A privacy-preserving framework based on TensorFlow. - [tf-encrypted](https://github.com/tf-encrypted/tf-encrypted) - Bridge between TensorFlow and the [Microsoft SEAL](#SEAL) library. ## FHE Papers - [Fully homomorphic encryption using ideal lattices, STOC'99](https://dl.acm.org/doi/10.1145/1536414.1536440). - [Fully homomorphic encryption from ring-LWE and security for key dependent messages, CRYPTO'11](http://link.springer.com/10.1007/978-3-642-22792-9_29). - [Homomorphic Evaluation of the AES Circuit, CRYPTO'12](https://link.springer.com/chapter/10.1007/978-3-642-32009-5_49). - [Fully homomorphic encryption with polylog overhead, EUROCRYPT'12](https://link.springer.com/chapter/10.1007/978-3-642-29011-4_28). - [Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP, CRYPTO'12](http://link.springer.com/10.1007/978-3-642-32009-5_50). - [Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based, CRYPTO'13](http://link.springer.com/10.1007/978-3-642-40041-4_5) - [Algorithms in HElib, CRYPTO'14](http://link.springer.com/10.1007/978-3-662-44371-2_31) - [FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second, EUROCRYPT'15](http://link.springer.com/10.1007/978-3-662-46800-5_24) - [Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds, ASIACRYPT'16](http://link.springer.com/10.1007/978-3-662-53887-6_1) - [Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE, ASIACRYPT'17](http://link.springer.com/10.1007/978-3-319-70694-8_14) - [Homomorphic Encryption for Arithmetic of Approximate Numbers, ASIACRYPT'17](http://link.springer.com/10.1007/978-3-319-70694-8_15) - [A Full RNS Variant of FV Like Somewhat Homomorphic Encryption Schemes, SAC'17](http://link.springer.com/10.1007/978-3-319-69453-5_23) - [Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE, ASIACRYPT'17](10.1007/978-3-319-70694-8_14) - [Faster homomorphic linear transformations in HElib, CRYPTO'18](http://link.springer.com/10.1007/978-3-319-96884-1_4) - [Bootstrapping for Approximate Homomorphic Encryption, EUROCRYPT'18](https://link.springer.com/chapter/10.1007/978-3-319-78381-9_14) - [An Improved RNS Variant of the BFV Homomorphic Encryption Scheme, CT-RSA'19](http://link.springer.com/10.1007/978-3-030-12612-4_5) - [TFHE: Fast Fully Homomorphic Encryption Over the Torus, JOC'20](http://link.springer.com/10.1007/s00145-019-09319-x) - [Efficient Homomorphic Comparison Methods with Optimal Complexity, ASIACRYPT'2020](https://link.springer.com/10.1007/978-3-030-64834-3_8) - [PEGASUS: Bridging polynomial and non-polynomial evaluations in homomorphic encryption, S&P'21](https://ieeexplore.ieee.org/document/9519408/) - [General Bootstrapping Approach for RLWE-based Homomorphic Encryption, ePrint'21](https://eprint.iacr.org/2021/691) - [On the Security of Homomorphic Encryption on Approximate Numbers, EUROCRYPT'21](https://link.springer.com/10.1007/978-3-030-77870-5_23) - [Efficient Bootstrapping for Approximate Homomorphic Encryption with Non-sparse Keys, EUROCRYPT'21](https://link.springer.com/10.1007/978-3-030-77870-5_21) - [Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts, ACNS'21](https://link.springer.com/chapter/10.1007/978-3-030-78372-3_18) # 5 Differential Privacy (DP) # 6 Zero-Knowledge Proof (ZKP) # 7 Privacy-Preserving Machine Learning (PPML) * [Machine Learning Classification over Encrypted Data, NDSS'14](https://eprint.iacr.org/2014/331.pdf) * [Oblivious Multi-Party Machine Learning on Trusted Processors, USENIX SECURITY'16](https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko) * [Prio: Private, Robust, and Scalable Computation of Aggregate Statistics, NSDI'17](https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs) * [SecureML: A System for Scalable Privacy-Preserving Machine Learning, S&P'17](https://eprint.iacr.org/2017/396) * [MiniONN: Oblivious Neural Network Predictions via MiniONN Transformations, CCS'17](https://acmccs.github.io/papers/p619-liuA.pdf) * [Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications, AsiaCCS'17](https://eprint.iacr.org/2017/1164) * [DeepSecure: Scalable Provably-Secure Deep Learning, DAC'17](https://arxiv.org/abs/1705.08963) * [Secure Computation for Machine Learning With SPDZ, NIPS'18](https://arxiv.org/abs/1901.00329) * [ABY3:a Mixed protocol Framework for Machine Learning, CCS'18](https://eprint.iacr.org/2018/403.pdf) * [SecureNN: Efficient and Private Neural Network Training, PETS'18](https://eprint.iacr.org/2018/442.pdf) * [Gazelle: A Low Latency Framework for Secure Neural Network Inference, USENIX SECURITY'18](https://arxiv.org/abs/1801.05507) * [CHET: an optimizing compiler for fully-homomorphic neural-network inferencing, PLDI'19](https://dl.acm.org/citation.cfm?id=3314628) * [New Primitives for Actively-Secure MPC over Rings with Applications to Private Machine Learning, S&P'19](https://eprint.iacr.org/2019/599.pdf) * [Helen: Maliciously Secure Coopetitive Learning for Linear Models, S&P'19](https://ieeexplore.ieee.org/abstract/document/8835215) * [Efficient multi-key homomorphic encryption with packed ciphertexts with application to oblivious neural network inference. CCS'19](https://dl.acm.org/citation.cfm?id=3363207) * [XONN: XNOR-based Oblivious Deep Neural Network Inference, USENIX Security'19](https://www.usenix.org/conference/usenixsecurity19/presentation/riazi) * [QUOTIENT: two-party secure neural network training and prediction, CCS'19](https://dl.acm.org/citation.cfm?id=3339819) * [Secure Evaluation of Quantized Neural Networks, PETS'20](https://content.sciendo.com/view/journals/popets/2020/4/article-p355.xml) * [ASTRA: High Throughput 3PC over Rings with Application to Secure Prediction, CCSW'19](https://eprint.iacr.org/2019/429) * [SoK: Modular and Efficient Private Decision Tree Evaluation, PETS'19](https://eprint.iacr.org/2018/1099.pdf) * [Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning, NDSS'20](https://eprint.iacr.org/2019/1315) * [BLAZE: Blazing Fast Privacy-Preserving Machine Learning, NDSS'20](https://eprint.iacr.org/2020/042) * [FLASH: Fast and Robust Framework for Privacy-preserving Machine Learning, PETS'20](https://eprint.iacr.org/2019/1365) * [Delphi: A Cryptographic Inference Service for Neural Networks, USENIX SECURITY'20](https://eprint.iacr.org/2020/050) * [FALCON: Honest-Majority Maliciously Secure Framework for Private Deep Learning, PETS'21](https://arxiv.org/abs/2004.02229) * [MP2ML: A Mixed-Protocol Machine Learning Framework for Private Inference, ARES'20](https://dl.acm.org/doi/abs/10.1145/3407023.3407045) * [SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search, USENIX Security'20](https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hao) * [PySyft: A Generic Framework for Privacy Preserving Deep Learning](https://arxiv.org/abs/1811.04017) * [Private Deep Learning in TensorFlow Using Secure Computation](https://arxiv.org/abs/1810.08130) * [CryptoDL: Deep Neural Networks over Encrypted Data](https://arxiv.org/abs/1711.05189) * [CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/04/CryptonetsTechReport.pdf) * [CrypTFlow: Secure TensorFlow Inference](https://eprint.iacr.org/2019/1049.pdf) * [CrypTFlow2: Practical 2-Party Secure Inference, CCS'20](https://arxiv.org/abs/2010.06457) * [ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing](https://arxiv.org/abs/2006.04593) * [Practical Privacy-Preserving K-means Clustering, PETS'20](https://content.sciendo.com/view/journals/popets/2020/4/article-p414.xml) * [ABY2.0: Improved Mixed-Protocol Secure Two-Party Computation (Full Version), USENIX Security'21](https://eprint.iacr.org/2020/1225.pdf) * [SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning](https://arxiv.org/abs/2005.10296) * [An Efficient 3-Party Framework for Privacy-Preserving Neural Network Inference, ESORICS'20](https://link.springer.com/chapter/10.1007/978-3-030-58951-6_21) * [Secure and Verifiable Inference in Deep Neural Networks, ACSAC'20](https://dl.acm.org/doi/abs/10.1145/3427228.3427232) * [Privacy-preserving Density-based Clustering, AisaCCS'21](https://www.eurecom.fr/publication/6475/download/sec-publi-6475.0.pdf) * [SIRNN: A Math Library for Secure RNN Inference, S&P'21](https://eprint.iacr.org/2021/459) * [Let’s Stride Blindfolded in a Forest: Sublinear Multi-Client Decision Trees Evaluation, NDSS'21](https://www.ndss-symposium.org/ndss-paper/lets-stride-blindfolded-in-a-forest-sublinear-multi-client-decision-trees-evaluation/) * [MUSE: Secure Inference Resilient to Malicious Clients](https://people.eecs.berkeley.edu/~raluca/MUSEcamera.pdf) * [DeepReDuce: ReLU Reduction for Fast Private Inference, USENIX Security'21](https://arxiv.org/abs/2103.01396) * [Garbled Neural Networks are Practical](https://eprint.iacr.org/2019/338.pdf) * [GForce : GPU-Friendly Oblivious and Rapid Neural Network Inference, USENIX Security'21](https://www.usenix.org/conference/usenixsecurity21/presentation/ng) * [CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU, S&P'21](http://arxiv.org/abs/2104.10949) * [GALA : Greedy ComputAtion for Linear Algebra in Privacy-Preserved Neural Networks, NDSS'21](https://www.ndss-symposium.org/ndss-paper/gala-greedy-computation-for-linear-algebra-in-privacy-preserved-neural-networks/) * [Fantastic Four: Honest-Majority Four-Party Secure Computation With Malicious Security, USENIX Security'21](https://www.usenix.org/system/files/sec21fall-dalskov.pdf) * [When homomorphic encryption marries secret sharing: secure large-scale sparse logistic regression and applications in risk control, KDD'21](https://arxiv.org/abs/2008.08753) * [Microsoft Research](https://www.youtube.com/playlist?list=PLD7HFcN7LXRef-eTSGt_XOUJLZNoDINUn). Videos from SEAL/CKKS talks at Microsoft's Private AI Bootcamp. * [Glyph: Fast and Accurately Training Deep Neural Networks on Encrypted Data, NeurIPS'20](https://arxiv.org/pdf/1911.07101.pdf) * [Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning, USENIX Security'21](https://eprint.iacr.org/2021/730) * [SoK: Efficient Privacy-preserving Clustering, PoPETs'21](https://eprint.iacr.org/2021/809) * [ZEN: Efficient Zero-Knowledge Proofs for Neural Networks](https://eprint.iacr.org/2021/087/20210127:132648) * [zkCNN: Zero Knowledge Proofs for Convolutional Neural Network Predictions and Accuracy, CCS'21](https://eprint.iacr.org/2021/673) * [Secure Quantized Training for Deep Learning](https://arxiv.org/abs/2107.00501) * [Cerebro: A Platform for Multi-Party Cryptographic Collaborative Learning, USENIX Security'21](https://www.usenix.org/conference/usenixsecurity21/presentation/zheng) * [Tetrad: Actively Secure 4PC for Secure Training and Inference, NDSS'22](https://arxiv.org/abs/2106.02850) * [Adam in Private : Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation](https://arxiv.org/abs/2106.02203) * [SIMC: ML Inference Secure Against Malicious Clients at Semi-Honest Cost, USENIX Security'22](https://www.usenix.org/conference/usenixsecurity22/presentation/chandran) * [Circa : Stochastic ReLUs for Private Deep Learning, NeurIPS'21](https://proceedings.neurips.cc/paper/2021/file/11eba2991cc62daa4a85be5c0cfdae97-Paper.pdf) * [Cheetah: Lean and Fast Secure Two-Party Deep Neural Network Inference, USENIX Security'22](https://eprint.iacr.org/2022/207) * [Secure Poisson Regression, USENIX Security'22](https://www.usenix.org/conference/usenixsecurity22/presentation/kelkar) * [SecFloat: Accurate Floating-Point meets Secure 2-Party Computation, S&P'22](https://eprint.iacr.org/2022/322) * [MPClan: Protocol Suite for Privacy-Conscious Computations, IACR ePrint'22](https://eprint.iacr.org/2022/675) * [LLAMA: A Low Latency Math Library for Secure Inference, PoPETs'22](https://eprint.iacr.org/2022/793)