# grammarinator **Repository Path**: hyperions/grammarinator ## Basic Information - **Project Name**: grammarinator - **Description**: ANTLR v4 grammar-based test generator - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-04-23 - **Last Updated**: 2024-06-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ============= Grammarinator ============= *ANTLRv4 grammar-based test generator* .. image:: https://img.shields.io/pypi/v/grammarinator?logo=python&logoColor=white :target: https://pypi.org/project/grammarinator/ .. image:: https://img.shields.io/pypi/l/grammarinator?logo=open-source-initiative&logoColor=white :target: https://pypi.org/project/grammarinator/ .. image:: https://img.shields.io/github/workflow/status/renatahodovan/grammarinator/main/master?logo=github&logoColor=white :target: https://github.com/renatahodovan/grammarinator/actions .. image:: https://img.shields.io/coveralls/github/renatahodovan/grammarinator/master?logo=coveralls&logoColor=white :target: https://coveralls.io/github/renatahodovan/grammarinator *Grammarinator* is a random test generator / fuzzer that creates test cases according to an input ANTLR_ v4 grammar. The motivation behind this grammar-based approach is to leverage the large variety of publicly available `ANTLR v4 grammars`_. The `trophy page`_ of the found issues is available from the wiki. .. _ANTLR: http://www.antlr.org .. _`ANTLR v4 grammars`: https://github.com/antlr/grammars-v4 .. _`trophy page`: https://github.com/renatahodovan/grammarinator/wiki Requirements ============ * Python_ >= 3.5 * pip_ and setuptools Python packages (the latter is automatically installed by pip). * Java_ SE >= 7 JRE or JDK .. _Python: https://www.python.org .. _pip: https://pip.pypa.io .. _Java: https://www.oracle.com/java/ Install ======= The quick way (to install the latest official release):: pip3 install grammarinator Or clone the project and run setuptools (to install the freshest development revision):: python3 setup.py install Usage ===== As a first step, *Grammarinator* takes an `ANTLR v4 grammar`_ and creates a test generator script in Python3. Such a generator can be subclassed later to customize it further if needed. Basic command-line syntax of test generator creation:: grammarinator-process -o --no-actions .. **Notes** *Grammarinator* uses the `ANTLR v4 grammar`_ format as its input, which makes existing grammars (lexer and parser rules) easily reusable. However, because of the inherently different goals of a fuzzer and a parser, inlined code (actions and conditions, header and member blocks) are most probably not reusable, or even preventing proper execution. For first experiments with existing grammar files, ``grammarinator-process`` supports the command-line option ``--no-actions``, which skips all such code blocks during fuzzer generation. Once inlined code is tuned for fuzzing, that option may be omitted. .. _`ANTLR v4 grammar`: https://github.com/antlr/grammars-v4 After having generated and optionally customized a fuzzer, it can be executed by the ``grammarinator-generate`` script (or by manually instantiating it in a custom-written driver, of course). Basic command-line syntax of ``grammarinator-generate``:: grammarinator-generate -r -d \ -o -n \ -t -t Beside generating test cases from scratch based on the ANTLR grammar, Grammarinator is also able to recombine existing inputs or mutate only a small portion of them. To use these additional generation approaches, a population of selected test cases has to be prepared. The preparation happens with the ``grammarinator-parse`` tool, which processes the input files with an ANTLR grammar (possibly with the same one as the generator grammar) and builds grammarinator tree representations from them (with .grt extension). Having a population of such .grt files, ``grammarinator-generate`` can make use of them with the ``--population`` cli option. If the ``--population`` option is set, then Grammarinator will choose a strategy (generation, mutation, or recombination) randomly at the creation of every new test case. If any of the strategies is unwanted, they can be disabled with the ``--no-generate``, ``--no-mutate`` or ``--no-recombine`` options. Basic command line syntax of ``grammarinator-parse``:: grammarinator-parse -r \ -i -o .. **Notes** Real-life grammars often use recursive rules to express certain patterns. However, when using such rule(s) for generation, we can easily end up in an unexpectedly deep call stack. With the ``--max-depth`` or ``-d`` options, this depth - and also the size of the generated test cases - can be controlled. Another specialty of the ANTLR grammars is that they support so-called hidden tokens. These rules typically describe such elements of the target language that can be placed basically anywhere without breaking the syntax. The most common examples are comments or whitespaces. However, when using these grammars - which don't define explicitly where whitespace may or may not appear in rules - to generate test cases, we have to insert the missing spaces manually. This can be done by applying a serializer (with the ``-s`` option) to the tree representation of the output tests. A simple serializer - that inserts a space after every unparser rule - is provided by *Grammarinator* (``grammarinator.runtime.simple_space_serializer``). In some cases, we may want to postprocess the output tree itself (without serializing it). For example, to enforce some logic that cannot be expressed by a context-free grammar. For this purpose the transformer mechanism can be used (with the ``-t`` option). Similarly to the serializers, it will take a tree as input, but instead of creating a string representation, it is expected to return the modified (transformed) tree object. As a final thought, one must not forget that the original purpose of grammars is the syntax-wise validation of various inputs. As a consequence, these grammars encode syntactic expectations only and not semantic rules. If we still want to add semantic knowledge into the generated test, then we can inherit custom fuzzers from the generated ones and redefine methods corresponding to lexer or parser rules in ways that encode the required knowledge (e.g.: HTMLCustomGenerator_). .. _HTMLCustomGenerator: examples/fuzzer/HTMLCustomGenerator.py Working Example =============== The repository contains a minimal example_ to generate HTML files. To give it a try, run the processor first:: grammarinator-process examples/grammars/HTMLLexer.g4 examples/grammars/HTMLParser.g4 \ -o examples/fuzzer/ Then, use the generator to produce test cases:: grammarinator-generate HTMLCustomGenerator.HTMLCustomGenerator -r htmlDocument -d 20 \ -o examples/tests/test_%d.html -n 100 \ -s HTMLGenerator.html_space_serializer \ --sys-path examples/fuzzer/ .. _example: examples/ Compatibility ============= *Grammarinator* was tested on: * Linux (Ubuntu 16.04 / 18.04) * Mac OS X (Sierra 10.12 / High Sierra 10.13 / Mojave 10.14 / Catalina 10.15) * Windows (Server 2012 R2 / Server version 1809 / Windows 10) Citations ========= Background on *Grammarinator* is published in: * Renata Hodovan, Akos Kiss, and Tibor Gyimothy. Grammarinator: A Grammar-Based Open Source Fuzzer. In Proceedings of the 9th ACM SIGSOFT International Workshop on Automating Test Case Design, Selection, and Evaluation (A-TEST 2018), pages 45-48, Lake Buena Vista, Florida, USA, November 2018. ACM. https://doi.org/10.1145/3278186.3278193 Copyright and Licensing ======================= Licensed under the BSD 3-Clause License_. .. _License: LICENSE.rst