# docker-compose **Repository Path**: icegit/docker-compose ## Basic Information - **Project Name**: docker-compose - **Description**: 大数据平台docker搭建 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 4 - **Created**: 2023-11-03 - **Last Updated**: 2023-11-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Bigdata-Docker构建大数据学习开发环境 ### 介绍 ##### 1、镜像环境 * 系统:centos 8 * Java :java1.8 * Zookeeper: 3.4.6 * Hadoop: 2.7.1 * Hive: 1.2.1 * Spark: 1.6.2 * Hbase: 1.1.2 ##### 2、镜像介绍 * centos-java:openssh、java8,基础镜像 * docker-zk: 基于centos-java构建,zookeeper,用于启动zk集群 * docker-hadoop:基于centos-java构建, hadoop,用于启动hadoop集群 * docker-hive:基于docker-hadoop镜像构建,包含hadoop、hive,用于启动hadoop、hive集群 * docker-spark:基于docker-hive镜像构建,包含hadoop、hive、spark,用于启动hadoo、hive、spark集群 * docker-hbase:基于docker-spark镜像构建,包含hadoop、hive、spark、hbase,用于启动hadoop、hive、spark、hbase集群 ### Quick Start #### 1、装载镜像,并重命名 ##### 离线版 ``` $ docker load < xxx.tar $ docker tag [镜像ID] [repository]:[tag] ``` 可以根据需求注释掉不需要的镜像 ##### 在线版,点击运行build.sh #### 2、创建大数据集群网络 ``` $ docker network create zoo ``` #### 3、启动zk集群 ``` $ docker-compose -f docker-compose-zk.yml up -d ``` 根据需要可在compose膜拜中增减集群数量,注意同时要增减myid配置 #### 4、大数据集群 ##### a)启动Hadoop集群 ``` $ docker-compose -f docker-compose-hadoop.yml up -d ``` 启动集群,格式化namenode ``` $ docker exec -it hadoop-master bash $ cd /usr/local/hadoop/bin $ hdfs namenode -format ``` 然后启动hdfs和yarn ``` $ cd /usr/local/hadoop/sbin $ ./start-all.sh ``` 访问http://localhost:50070,看集群是否启动成功 有可能50070端口无法使用,原因是hyper-v端口占用问题,需要修改hyper-v保留端口或者修改端口 ##### b)启动Hive集群 需要依赖mysql容器 ``` $ docker-compose -f docker-compose-hive.yml up -d ``` 启动hadoo集群的操作和上面启动hadoop集群一样 ##### c)启动Spark集群 需要依赖mysql容器 ``` $ docker-compose -f docker-compose-spark.yml up -d ``` 启动hadoop集群同a。 启动spark集群 ``` $ sh /usr/local/spark/sbin/start-all.sh ``` 使用 spark 自带样例中的计算 Pi 的应用来验证一下 ``` /usr/local/spark/bin/spark-submit --master spark://hadoop-master:7077 --class org.apache.spark.examples.SparkPi /usr/local/spark/lib/spark-examples-1.6.2-hadoop2.2.0.jar 1000 ``` 计算结果输出如下 ``` starting org.apache.spark.deploy.master.Master, logging to /usr/local/spark/logs/spark--org.apache.spark.deploy.master.Master-1-1bdfd98bccc7.out hadoop-slave2: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-9dd7e2ebbf13.out hadoop-slave3: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-97a87730dd03.out hadoop-slave1: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-adb07707f15b.out