# SpeechEmotionRecognition-Pytorch **Repository Path**: imoonx/SpeechEmotionRecognition-Pytorch ## Basic Information - **Project Name**: SpeechEmotionRecognition-Pytorch - **Description**: 基于Pytorch实现的语音情感识别 - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2024-01-27 - **Last Updated**: 2024-01-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 基于Pytorch实现的语音情感识别系统 本项目是一个语音情感识别项目,目前效果一般,供大家学习使用。后面会持续优化,提高准确率,如果同学们有好的建议,也欢迎来探讨。 **欢迎大家扫码入知识星球或者QQ群讨论,知识星球里面提供项目的模型文件和博主其他相关项目的模型文件,也包括其他一些资源。**
知识星球 QQ群
# 使用准备 - Anaconda 3 - Python 3.8 - Pytorch 1.13.1 - Windows 10 or Ubuntu 18.04 # 模型测试表 | 模型 | Params(M) | 预处理方法 | 数据集 | 类别数量 | 准确率 | 获取模型 | |:-----------------:|:---------:|:-----:|:-------:|:----:|:----:|:--------:| | BidirectionalLSTM | 1.8 | Flank | RAVDESS | 8 | 0.78 | 加入知识星球获取 | 说明: 1. RAVDESS数据集只使用`Audio_Speech_Actors_01-24.zip` ## 安装环境 - 首先安装的是Pytorch的GPU版本,如果已经安装过了,请跳过。 ```shell conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia ``` - 安装mser库。 使用pip安装,命令如下: ```shell python -m pip install mser -U -i https://pypi.tuna.tsinghua.edu.cn/simple ``` **建议源码安装**,源码安装能保证使用最新代码。 ```shell git clone https://github.com/yeyupiaoling/SpeechEmotionRecognition-Pytorch.git cd SpeechEmotionRecognition-Pytorch/ pip install . ``` ## 准备数据 生成数据列表,用于下一步的读取需要,项目默认提供一个数据集[RAVDESS](https://zenodo.org/record/1188976/files/Audio_Speech_Actors_01-24.zip?download=1),这个数据集的[介绍页面](https://zenodo.org/record/1188976#.XsAXemgzaUk),这个数据包含中性、平静、快乐、悲伤、愤怒、恐惧、厌恶、惊讶八种情感,本项目只使用里面的`Audio_Speech_Actors_01-24.zip`,数据集,说话的语句只有`Kids are talking by the door`和`Dogs are sitting by the door`,可以说这个训练集是非常简单的。下载这个数据集并解压到`dataset`目录下。 然后执行`create_data.py`里面的`create_ravdess_list('dataset/Audio_Speech_Actors_01-24', 'dataset')`函数即可生成数据列表,同时也生成归一化文件,具体看代码。 ```shell python create_data.py ``` 如果自定义数据集,可以按照下面格式,`audio_path`为音频文件路径,用户需要提前把音频数据集存放在`dataset/audio`目录下,每个文件夹存放一个类别的音频数据,每条音频数据长度在3秒左右,如 `dataset/audio/angry/······`。`audio`是数据列表存放的位置,生成的数据类别的格式为 `音频路径\t音频对应的类别标签`,音频路径和标签用制表符 `\t`分开。读者也可以根据自己存放数据的方式修改以下函数。 执行`create_data.py`里面的`get_data_list('dataset/audios', 'dataset')`函数即可生成数据列表,同时也生成归一化文件,具体看代码。 ```shell python create_data.py ``` 生成的列表是长这样的,前面是音频的路径,后面是该音频对应的标签,从0开始,路径和标签之间用`\t`隔开。 ```shell dataset/Audio_Speech_Actors_01-24/Actor_13/03-01-01-01-02-01-13.wav 0 dataset/Audio_Speech_Actors_01-24/Actor_01/03-01-02-01-01-01-01.wav 1 dataset/Audio_Speech_Actors_01-24/Actor_01/03-01-03-02-01-01-01.wav 2 ``` **注意:** `create_data.py`里面的`create_standard('configs/bi_lstm.yml')`函数必须要执行的,这个是生成归一化的文件。 ## 训练 接着就可以开始训练模型了,创建 `train.py`。配置文件里面的参数一般不需要修改,但是这几个是需要根据自己实际的数据集进行调整的,首先最重要的就是分类大小`dataset_conf.num_class`,这个每个数据集的分类大小可能不一样,根据自己的实际情况设定。然后是`dataset_conf.batch_size`,如果是显存不够的话,可以减小这个参数。 ```shell # 单卡训练 CUDA_VISIBLE_DEVICES=0 python train.py # 多卡训练 CUDA_VISIBLE_DEVICES=0,1 torchrun --standalone --nnodes=1 --nproc_per_node=2 train.py ``` 训练输出日志: ```[2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:14 - ----------- 额外配置参数 ----------- [2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:16 - configs: configs/bi_lstm.yml [2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:16 - local_rank: 0 [2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:16 - pretrained_model: None [2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:16 - resume_model: None [2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:16 - save_model_path: models/ [2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:16 - use_gpu: True [2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:17 - ------------------------------------------------ [2023-08-18 18:48:49.680176 INFO ] utils:print_arguments:19 - ----------- 配置文件参数 ----------- [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:22 - dataset_conf: [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:25 - aug_conf: [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - noise_aug_prob: 0.2 [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - noise_dir: dataset/noise [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - speed_perturb: True [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - volume_aug_prob: 0.2 [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - volume_perturb: False [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:25 - dataLoader: [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - batch_size: 32 [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - num_workers: 4 [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:29 - do_vad: False [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:25 - eval_conf: [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - batch_size: 1 [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - max_duration: 3 [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:29 - label_list_path: dataset/label_list.txt [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:29 - max_duration: 3 [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:29 - min_duration: 0.5 [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:29 - sample_rate: 16000 [2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:29 - scaler_path: dataset/standard.m [2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - target_dB: -20 [2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - test_list: dataset/test_list.txt [2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - train_list: dataset/train_list.txt [2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - use_dB_normalization: True [2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:22 - model_conf: [2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - num_class: None [2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:22 - optimizer_conf: [2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - learning_rate: 0.001 [2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - optimizer: Adam [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:29 - scheduler: WarmupCosineSchedulerLR [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:25 - scheduler_args: [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:27 - max_lr: 0.001 [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:27 - min_lr: 1e-05 [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:27 - warmup_epoch: 5 [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:29 - weight_decay: 1e-06 [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:22 - preprocess_conf: [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:29 - feature_method: CustomFeatures [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:22 - train_conf: [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:29 - enable_amp: False [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:29 - log_interval: 10 [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:29 - max_epoch: 60 [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:29 - use_compile: False [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:31 - use_model: BidirectionalLSTM [2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:32 - ------------------------------------------------ [2023-08-18 18:48:49.683184 WARNING] trainer:__init__:66 - Windows系统不支持多线程读取数据,已自动关闭! ========================================================================================== Layer (type:depth-idx) Output Shape Param # ========================================================================================== BidirectionalLSTM [1, 6] -- ├─Linear: 1-1 [1, 512] 160,256 ├─LSTM: 1-2 [1, 1, 512] 1,576,960 ├─Tanh: 1-3 [1, 512] -- ├─Dropout: 1-4 [1, 512] -- ├─Linear: 1-5 [1, 256] 131,328 ├─ReLU: 1-6 [1, 256] -- ├─Linear: 1-7 [1, 6] 1,542 ========================================================================================== Total params: 1,870,086 Trainable params: 1,870,086 Non-trainable params: 0 Total mult-adds (M): 1.87 ========================================================================================== Input size (MB): 0.00 Forward/backward pass size (MB): 0.01 Params size (MB): 7.48 Estimated Total Size (MB): 7.49 ========================================================================================== [2023-08-18 18:48:51.425936 INFO ] trainer:train:378 - 训练数据:4407 [2023-08-18 18:48:53.526136 INFO ] trainer:__train_epoch:331 - Train epoch: [1/60], batch: [0/138], loss: 1.80256, accuracy: 0.15625, learning rate: 0.00001000, speed: 15.24 data/sec, eta: 4:49:49 ···················· ``` # 评估 每轮训练结束可以执行评估,评估会出来输出准确率,还保存了混合矩阵图片,保存路径`output/images/`,如下。
打赏作者
# 预测 在训练结束之后,我们得到了一个模型参数文件,我们使用这个模型预测音频。 ```shell python infer.py --audio_path=dataset/test.wav ``` ## 打赏作者

打赏一块钱支持一下作者

打赏作者
# 参考资料 1. https://github.com/yeyupiaoling/AudioClassification-Pytorch