# statistic-learning-R-not **Repository Path**: jujun111/statistic-learning-r-not ## Basic Information - **Project Name**: statistic-learning-R-not - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-05-07 - **Last Updated**: 2025-05-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ![image](https://github.com/user-attachments/assets/c7ff6abe-8ae1-449e-9b07-7d1b49b9cf48)
## News 👇👇 Most of my time now is focused on **LLM/VLM** Inference. Please check 📖[Awesome-LLM-Inference](https://github.com/xlite-dev/Awesome-LLM-Inference) ![](https://img.shields.io/github/stars/xlite-dev/Awesome-LLM-Inference.svg?style=social), 📖[Awesome-Diffusion-Inference](https://github.com/xlite-dev/Awesome-Diffusion-Inference) ![](https://img.shields.io/github/stars/xlite-dev/Awesome-Diffusion-Inference.svg?style=social) and 📖[LeetCUDA](https://github.com/xlite-dev/LeetCUDA) ![](https://img.shields.io/github/stars/xlite-dev/LeetCUDA.svg?style=social) for more details. ## 📒Introduction 《统计学习方法-李航: 笔记-从原理到实现》 这是一份非常详细的学习笔记,200页,各种手推公式细节讲解,整理成PDF,有详细的目录,可结合《统计学习方法》提高学习效率。如果觉得有用,不妨给个🌟Star支持一下吧~ ## ©️Citations ```BibTeX @misc{statistic-learning-R-note@2019, title={statistic-learning-R-note: A detail note book of statistic-learning with R codes}, url={https://github.com/xlite-dev/statistic-learning-R-note}, note={Open-source software available at https://github.com/xlite-dev/statistic-learning-R-note}, author={xlite-dev}, year={2019} } ``` ## 🎉Download PDFs - [李航《统计学习方法》笔记--从原理到实现:基于R.pdf 👆🏻<点击下载!>](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) ```shell wget https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf ``` ## 📖Contents ![image](https://github.com/xlite-dev/statistic-learning-R-note/assets/31974251/561384a1-fbc3-40ed-af62-98268904f387) - 第一章 统计学习方法概述 - [1.6.2 泛化误差上界(P16-P17)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [1.4.2 过拟合与模型选择(P11)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - 第二章 感知机 - [2.3.1 感知机算法的原始形式](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [2.3.2 算法的收敛性(Novikoff 定理)(P31-P33)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [2.3.3 感知机学习算法的对偶形式(P33-P34)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [2.3.1 感知机算法的原始形式(P28-P29)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [2.3.3 感知机学习算法的对偶形式(P33-P34)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - 第三章 K 近邻法 - [3.2.2 距离度量(P39)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [3.3.1 构造kd 树(P41-P42)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - 第四章 朴素贝叶斯算法 - [4.1.1 基本方法(P47-P48)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [4.1.2 后验概率最大化的含义(P48-49)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [4.2.1 极大似然估计(P49)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [4.2.2 学习与分类算法(P50-51)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - 第五章 决策树 - [5.2.2 信息增益(P60-P61)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [5.2.3 信息增益比(P63)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [5.3.1 ID3 算法/C4.5 算法(P63-P65)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [5.4 决策树的剪枝(P65-P67)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [5.5.1 CART 生成(P68-P71)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [5.5.2 CART 剪枝(P72-P73)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - 第六章 逻辑斯蒂回归与最大熵模型 - [6.1.3 逻辑斯蒂回归模型的参数估计(P79)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [6.2.3 最大熵模型的学习(P83-P85)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [6.2.4 极大似然估计(P87)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [6.3.1 改进的迭代尺度算法(P89-P91)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - 第七章 支持向量机 - [7.1.3 间隔最大化(P101)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [7.1.4 学习的对偶算法(P104)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [7.2.3 支持向量(P113)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [7.4 序列最小最优化算法(P126)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - 第八章 提升方法 - [8.1.2 Adaboost 算法(P139)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [8.2 AdaBoost 算法的训练误差分析(P142-P145)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [8.3.2 前向分步算法与 AdaBoost(P145-P146)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [8.4.3 梯度提升(P151)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [8.1.3 AdaBoost 的例子(P140)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - 第九章 EM 算法及其推广 - [9.2 EM 算法的收敛性(P161)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [9.3.1 高斯混合模型(P163)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [9.4 EM 算法的推广(P167)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [9.3.1 高斯混合模型的 EM 算法(165)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - 第十章 隐马尔可夫模型 - [10.2.2 前向算法(P175-P176)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [10.2.3 后向算法(P178-P179)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [10.4.2 维特比算法(P185)]() - [10.2.4 一些概率与期望值的计算(P179-P180)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [10.2.2 前向算法(P175-P177)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [10.2.3 后向算法(P178)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [10.2.4 一些概率与期望值的计算(P179-P178)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [10.3.1 监督学习方法(P180)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [10.3.2 Baum-Welch 算法(P181-P184)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [10.4.1 近似算法(P184)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [10.4.2 维特比算法(P185-P186)](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - 十一章 条件随机场 - 参考文献 - [附录 1 例 1.1 的 R 实现/训练误差与预测误差的对比](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [附录 2 线性可分/不可分感知机的 R 实现 ](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [附录 3 离散特征的 2 维平衡 kd 树 R 代码 ](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [附录 4 离散特征的朴素贝叶斯法 R 代码](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [附录 5 决策树的实现的 R 代码](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [附录 6 逻辑斯蒂回归及最大熵模型的 R 实现](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [附录 7 基于 SMO 算法的支持向量机的 R 实现](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [附录 8 提升算法的 R 代码](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [附录 9 EM 算法的 R 实现](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) - [附录 10 HMM 模型的 R 实现](https://github.com/xlite-dev/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf) ## ©️License GNU General Public License v3.0 ## 🎉Contribute 🌟如果觉得有用,不妨给个🌟👆🏻Star支持一下吧~
v02 Star History Chart