# WorldOnRails **Repository Path**: kin-zhang/WorldOnRails ## Basic Information - **Project Name**: WorldOnRails - **Description**: 自用.... 原链接请自行去github,此处为kin的探索repo(gitee快一点) - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: release - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-06-17 - **Last Updated**: 2022-05-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # World on Rails ![teaser](assets/teaser.jpg) > [**Learning to drive from a world on rails**](https://dotchen.github.io/world_on_rails/) > Dian Chen, Vladlen Koltun, Philipp Krähenbühl, > _arXiv techical report ([arXiv 2105.00636](https://arxiv.org/abs/2105.00636))_ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/learning-to-drive-from-a-world-on-rails/autonomous-driving-on-carla-leaderboard)](https://paperswithcode.com/sota/autonomous-driving-on-carla-leaderboard?p=learning-to-drive-from-a-world-on-rails) This repo contains code for our paper [Learning to drive from a world on rails](https://arxiv.org/abs/2105.00636). ProcGen code coming soon. ## Reference If you find our repo or paper useful, please cite us as ``` @inproceedings{chen2021learning, title={Learning to drive from a world on rails}, author={Chen, Dian and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp}, booktitle={arXiv preprint arXiv:2105.00636}, year={2021} } ``` ## Updates * Checkout our [website](https://dotchen.github.io/world_on_rails/) for demo videos! ## Getting Started * To run CARLA and train the models, make sure you are using a machine with **at least** a mid-end GPU. * Please follow [INSTALL.md](docs/INSTALL.md) to setup the environment. ## Training * Please refer to [RAILS.md](docs/RAILS.md) on how to train our _World-on-Rails_ agent. * Please refer to [LBC.md](docs/LBC.md) on how to train the _LBC_ agent. ## Evaluation **If you evaluating the pretrained weights, make sure you are launching CARLA with `-vulkan`!** ### Leaderboard routes ```bash python evaluate.py --agent-config=[PATH TO CONFIG] ``` ### NoCrash routes ```bash python evaluate_nocrash.py --town={Town01,Town02} --weather={train, test} --agent-config=[PATH TO CONFIG] --resume ``` * Use defaults for _RAILS_, and `--agent=autoagents/lbc_agent` for _LBC_. * To print a readable table, use ```bash python -m scripts.view_nocrash_results [PATH TO CONFIG.YAML] ``` ### Pretrained weights * [Leaderboard models](https://utexas.box.com/s/8lcl7istkr23dtjqqiyu0v8is7ha5u2r) * [NoCrash models](https://utexas.box.com/s/54m24gz5xwy1oagsqmgosch7pq561h2e) ## Dataset We also release the data we trained for the leaderboard. Checkout [DATASET.md](docs/DATASET.md) for more details. ## Acknowledgements The `leaderboard` codes are built from the original [leaderboard](https://github.com/carla-simulator/leaderboard.git) repo. The `scenariorunner` codes are from the original [scenario_runner](https://github.com/carla-simulator/scenario_runner.git) repo. The `waypointer.py` GPS coordinate conversion codes are build from Marin Toromanoff's leadeboard submission. ## License This repo is released under the MIT License (please refer to the LICENSE file for details). The [leaderboard](https://github.com/carla-simulator/leaderboard.git) repo which our `leaderboard` folder builds upon is under the MIT License.