# spatiotemporal_semantic_corridor **Repository Path**: kin-zhang/spatiotemporal_semantic_corridor ## Basic Information - **Project Name**: spatiotemporal_semantic_corridor - **Description**: 原github链接为:https://github.com/HKUST-Aerial-Robotics/spatiotemporal_semantic_corridor 此处进行张聪明的探索,完善依赖中,阅读操作源码实践 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-03 - **Last Updated**: 2022-05-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Spatio-temporal Semantic Corridor ## 0. News **21 Sept. 2020:** The whole dependencies and a playable demo can be found in: **https://github.com/HKUST-Aerial-Robotics/EPSILON** **31 August 2019:** The code for the ssc planner is available online! **3 July 2019:** Our paper is available online! * **Safe Trajectory Generation for Complex Urban Environments Using Spatio-temporal Semantic Corridor**, Wenchao Ding, Lu Zhang, Jing Chen and Shaojie Shen [IEEE Xplore](https://ieeexplore.ieee.org/document/8740885). *W. Ding and L. Zhang contributed equally to this project.* ``` @article{ding2019safe, title={Safe Trajectory Generation for Complex Urban Environments Using Spatio-temporal Semantic Corridor}, author={Ding, Wenchao and Zhang, Lu and Chen, Jing and Shen, Shaojie}, journal={IEEE Robotics and Automation Letters}, year={2019}, publisher={IEEE} } ``` **What Is Next:** The code for the dependencies of this planner is comming soon! ## 1. Introduction This is the project page for the paper **''Safe Trajectory Generation for Complex Urban Environments Using Spatio-temporal Semantic Corridor''** which is published at IEEE Robotics and Automation Letters (RA-L). This project contains (**already released**): * ssc_map: maintainer for the semantic elements in the spatio-temporal domain. * ssc_planner: planner for generating the semantic corridor in the spatio-temporal domain and optimizing safe and dynamically feasible trajectories. * ssc_server_ros: ros server which manages the replanning. * ssc_visualizer: visualizing the elements both in the spatio-temporal domain (in a separate rviz window) and in the global coordinate. The dependencies of this project includes (**comming soon**): * `common` package: an integration of various mathematical tools such as polynomial, spline, primitive, lane, trajectory, state, optimization solvers, etc. It provides many easy-to-use interfaces for mathematical modeling. * `phy_simulator` package: a configurable multi-agent simulator. It provides ground truth information and listens planner feedbacks. * `semantic_map_manager` package: map with semantic information for vehicle local planning. Each agent is capable of rendering its local planning map based on its configuration. * `vehicle_model` package: basic vehicle models and controllers. * `vehicle_msgs` package: ros communication messages and corresponding encoder and decoders. * `playgrounds` package: test cases/configurations/scenarios stored in json format. * `behavior_planner` package: mpdm behavior planner for on-road driving. It can provide a local reference lane based on navigation information and behavior decision. * `forward_simulator` package: forward simulation * `motion_predictor` package: surrounding vehicle motion prediction. * `route_planner` package: road-level route planner, a simple version. The dependencies will be released in another repo: **https://github.com/HKUST-Aerial-Robotics/HDJI_planning_core**. The overall structure is as follows: ![alt text](fig/overview.png) **Videos:** video ## 2. Prerequisites ## 3. Build ## 4. Usage ## 5. Demos