# 线性回归算法-基础 **Repository Path**: kylewang_ai/fourth_week_basic_work ## Basic Information - **Project Name**: 线性回归算法-基础 - **Description**: 1. 对连续型特征,可以用哪个函数可视化其分布?(给出你最常用的一个即可),并根据代码运行结果给出示例。 2. 对两个连续型特征,可以用哪个函数得到这两个特征之间的相关性?根据代码运行结果,给出示例。 3. 如果发现特征之间有较强的相关性,在选择线性回归模型时应该采取什么措施。 4. 当采用带正则的模型以及采用随机梯度下降优化算法时,需要对输入(连续型)特征进行去量纲预处理。课程代码给出了用标准化(StandardScaler)的结果,请改成最小最大缩放(MinMaxScaler)去量纲 (,并重新训练最小二乘线性回归、岭回归、和Lasso模型。 5. 代码中给出了岭回归(RidgeCV)和Lasso(LassoCV)超参数(alpha_)调优的过程,请结合两个最佳模型以及最小二乘线性回归模型的结果,给出什么场合应该用岭回归,什么场合用Lasso,什么场合用最小二乘。 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2019-05-13 - **Last Updated**: 2024-06-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 第四周基础作业 #### 介绍 {**以下是码云平台说明,您可以替换此简介** 码云是 OSCHINA 推出的基于 Git 的代码托管平台(同时支持 SVN)。专为开发者提供稳定、高效、安全的云端软件开发协作平台 无论是个人、团队、或是企业,都能够用码云实现代码托管、项目管理、协作开发。企业项目请看 [https://gitee.com/enterprises](https://gitee.com/enterprises)} #### 软件架构 软件架构说明 #### 安装教程 1. xxxx 2. xxxx 3. xxxx #### 使用说明 1. xxxx 2. xxxx 3. xxxx #### 参与贡献 1. Fork 本仓库 2. 新建 Feat_xxx 分支 3. 提交代码 4. 新建 Pull Request #### 码云特技 1. 使用 Readme\_XXX.md 来支持不同的语言,例如 Readme\_en.md, Readme\_zh.md 2. 码云官方博客 [blog.gitee.com](https://blog.gitee.com) 3. 你可以 [https://gitee.com/explore](https://gitee.com/explore) 这个地址来了解码云上的优秀开源项目 4. [GVP](https://gitee.com/gvp) 全称是码云最有价值开源项目,是码云综合评定出的优秀开源项目 5. 码云官方提供的使用手册 [https://gitee.com/help](https://gitee.com/help) 6. 码云封面人物是一档用来展示码云会员风采的栏目 [https://gitee.com/gitee-stars/](https://gitee.com/gitee-stars/)