# yolo_quantization **Repository Path**: lbing9002/yolo_quantization ## Basic Information - **Project Name**: yolo_quantization - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-12-29 - **Last Updated**: 2023-12-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # yolo_quantization The code is to quantization **float32 network** of darknet to **uint8 network** based of paper: >**Quantization and Training of Neural Networks for Efficient** < https://arxiv.org/abs/1712.05877 > [The Commond to Run My Project] ========= Train: >**set GPU=1 in Makefile** make -j8 ./darknet detector train cfg/voc_nok.data cfg/yolov3-tiny-mask_quant.cfg [pretrain weights file I gave to you(default in cfg folder)] Test: >**set GPU=0 in Makefile** make -j8 ./darknet detector test cfg/voc_nok.data cfg/yolov3-tiny_quant.cfg [weights file] [image path] [Pretrain Cfg file and Weights file] ========= https://pan.baidu.com/s/16_ULXdNPmIhoEmu7jXmkmQ password: qy8a [Performance] ========= | quantization | inference time (intel chip 64bit) | recall | precision | f1 score | | :------: | :------: | :------: | :------: | :------: | | darknet | 0.83s | 74.43 | 89.45 | 81.25| | quantization mine | 0.34s | 90.08 | 91.83 | 90.94 |