# neural-question-generation **Repository Path**: lduml/neural-question-generation ## Basic Information - **Project Name**: neural-question-generation - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-12-31 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Neural Question Generation This is not official implementation for the paper [Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-attention Networks](https://www.aclweb.org/anthology/D18-1424) I implemented in Pytorch to reproduce similar result as the paper ## Dependencies This code is written in Python. Dependencies include * python >= 3.6 * pytorch >= 1.0 * nltk * tqdm * [pytorch_scatter](https://github.com/rusty1s/pytorch_scatter) ## Download data and Preprocess ```bash mkdir squad wget http://nlp.stanford.edu/data/glove.840B.300d.zip -O ./data/glove.840B.300d.zip unzip ./data/glove.840B.300d.zip wget https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json -O ./squad/train-v1.1.json wget https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json -O ./squad/dev-v1.1.json cd data python process_data.py ``` ## Configuration You might need to change configuration in config.py.
If you want to train, change train = True and set gpu device in config.py ## Evaluation from this [repository](https://github.com/xinyadu/nqg) ```bash cd qgevalcap python2 eval.py --out_file prediction_file --src_file src_file --tgt_file target_file ``` ## Results |
BLEU_1
|
BLEU_2
|
BLEU_3
|
BLEU_4
| |:--------|:--------:|--------:|--------:| |
44.57
|
29.34
|
21.74
|
16.28
|