# nlp-tutorial
**Repository Path**: lduml/nlp-tutorial
## Basic Information
- **Project Name**: nlp-tutorial
- **Description**: https://github.com/graykode/nlp-tutorial
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 1
- **Created**: 2020-07-17
- **Last Updated**: 2022-04-11
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
## nlp-tutorial

`nlp-tutorial` is a tutorial for who is studying NLP(Natural Language Processing) using **TensorFlow** and **Pytorch**. Most of the models in NLP were implemented with less than **100 lines** of code.(except comments or blank lines)
## Curriculum - (Example Purpose)
#### 1. Basic Embedding Model
- 1-1. [NNLM(Neural Network Language Model)](https://github.com/graykode/nlp-tutorial/tree/master/1-1.NNLM) - **Predict Next Word**
- Paper - [A Neural Probabilistic Language Model(2003)](http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf)
- Colab - [NNLM_Tensor.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/1-1.NNLM/NNLM_Tensor.ipynb), [NNLM_Torch.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/1-1.NNLM/NNLM_Torch.ipynb)
- 1-2. [Word2Vec(Skip-gram)](https://github.com/graykode/nlp-tutorial/tree/master/1-2.Word2Vec) - **Embedding Words and Show Graph**
- Paper - [Distributed Representations of Words and Phrases
and their Compositionality(2013)](https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf)
- Colab - [Word2Vec_Tensor(NCE_loss).ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/1-2.Word2Vec/Word2Vec_Skipgram_Tensor(NCE_loss).ipynb), [Word2Vec_Tensor(Softmax).ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/1-2.Word2Vec/Word2Vec_Skipgram_Tensor(Softmax).ipynb), [Word2Vec_Torch(Softmax).ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/1-2.Word2Vec/Word2Vec_Skipgram_Torch(Softmax).ipynb)
- 1-3. [FastText(Application Level)](https://github.com/graykode/nlp-tutorial/tree/master/1-3.FastText) - **Sentence Classification**
- Paper - [Bag of Tricks for Efficient Text Classification(2016)](https://arxiv.org/pdf/1607.01759.pdf)
- Colab - [FastText.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/1-3.FastText/FastText.ipynb)
#### 2. CNN(Convolutional Neural Network)
- 2-1. [TextCNN](https://github.com/graykode/nlp-tutorial/tree/master/2-1.TextCNN) - **Binary Sentiment Classification**
- Paper - [Convolutional Neural Networks for Sentence Classification(2014)](http://www.aclweb.org/anthology/D14-1181)
- Colab - [TextCNN_Tensor.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/2-1.TextCNN/TextCNN_Tensor.ipynb), [TextCNN_Torch.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/2-1.TextCNN/TextCNN_Torch.ipynb)
- 2-2. DCNN(Dynamic Convolutional Neural Network)
#### 3. RNN(Recurrent Neural Network)
- 3-1. [TextRNN](https://github.com/graykode/nlp-tutorial/tree/master/3-1.TextRNN) - **Predict Next Step**
- Paper - [Finding Structure in Time(1990)](http://psych.colorado.edu/~kimlab/Elman1990.pdf)
- Colab - [TextRNN_Tensor.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/3-1.TextRNN/TextRNN_Tensor.ipynb), [TextRNN_Torch.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/3-1.TextRNN/TextRNN_Torch.ipynb)
- 3-2. [TextLSTM](https://github.com/graykode/nlp-tutorial/tree/master/3-2.TextLSTM) - **Autocomplete**
- Paper - [LONG SHORT-TERM MEMORY(1997)](https://www.bioinf.jku.at/publications/older/2604.pdf)
- Colab - [TextLSTM_Tensor.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/3-2.TextLSTM/TextLSTM_Tensor.ipynb), [TextLSTM_Torch.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/3-2.TextLSTM/TextLSTM_Torch.ipynb)
- 3-3. [Bi-LSTM](https://github.com/graykode/nlp-tutorial/tree/master/3-3.Bi-LSTM) - **Predict Next Word in Long Sentence**
- Colab - [Bi_LSTM_Tensor.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/3-3.Bi-LSTM/Bi_LSTM_Tensor.ipynb), [Bi_LSTM_Torch.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/3-3.Bi-LSTM/Bi_LSTM_Torch.ipynb)
#### 4. Attention Mechanism
- 4-1. [Seq2Seq](https://github.com/graykode/nlp-tutorial/tree/master/4-1.Seq2Seq) - **Change Word**
- Paper - [Learning Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation(2014)](https://arxiv.org/pdf/1406.1078.pdf)
- Colab - [Seq2Seq_Tensor.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/4-1.Seq2Seq/Seq2Seq_Tensor.ipynb), [Seq2Seq_Torch.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/4-1.Seq2Seq/Seq2Seq_Torch.ipynb)
- 4-2. [Seq2Seq with Attention](https://github.com/graykode/nlp-tutorial/tree/master/4-2.Seq2Seq(Attention)) - **Translate**
- Paper - [Neural Machine Translation by Jointly Learning to Align and Translate(2014)](https://arxiv.org/abs/1409.0473)
- Colab - [Seq2Seq(Attention)_Tensor.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/4-2.Seq2Seq(Attention)/Seq2Seq(Attention)_Tensor.ipynb), [Seq2Seq(Attention)_Torch.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/4-2.Seq2Seq(Attention)/Seq2Seq(Attention)_Torch.ipynb)
- 4-3. [Bi-LSTM with Attention](https://github.com/graykode/nlp-tutorial/tree/master/4-3.Bi-LSTM(Attention)) - **Binary Sentiment Classification**
- Colab - [Bi_LSTM(Attention)_Tensor.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/4-3.Bi-LSTM(Attention)/Bi_LSTM(Attention)_Tensor.ipynb), [Bi_LSTM(Attention)_Torch.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/4-3.Bi-LSTM(Attention)/Bi_LSTM(Attention)_Torch.ipynb)
#### 5. Model based on Transformer
- 5-1. [The Transformer](https://github.com/graykode/nlp-tutorial/tree/master/5-1.Transformer) - **Translate**
- Paper - [Attention Is All You Need(2017)](https://arxiv.org/abs/1706.03762)
- Colab - [Transformer_Torch.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/5-1.Transformer/Transformer_Torch.ipynb), [Transformer(Greedy_decoder)_Torch.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/5-1.Transformer/Transformer(Greedy_decoder)_Torch.ipynb)
- 5-2. [BERT](https://github.com/graykode/nlp-tutorial/tree/master/5-2.BERT) - **Classification Next Sentence & Predict Masked Tokens**
- Paper - [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding(2018)](https://arxiv.org/abs/1810.04805)
- Colab - [BERT_Torch.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/5-2.BERT/BERT_Torch.ipynb)
| Model | Example | Framework | Lines(torch/tensor) |
| :------------------------: | :--------------------------------: | :-----------: | :-----------------: |
| NNLM | Predict Next Word | Torch, Tensor | 67/83 |
| Word2Vec(Softmax) | Embedding Words and Show Graph | Torch, Tensor | 77/94 |
| TextCNN | Sentence Classification | Torch, Tensor | 94/99 |
| TextRNN | Predict Next Step | Torch, Tensor | 70/88 |
| TextLSTM | Autocomplete | Torch, Tensor | 73/78 |
| Bi-LSTM | Predict Next Word in Long Sentence | Torch, Tensor | 73/78 |
| Seq2Seq | Change Word | Torch, Tensor | 93/111 |
| Seq2Seq with Attention | Translate | Torch, Tensor | 108/118 |
| Bi-LSTM with Attention | Binary Sentiment Classification | Torch, Tensor | 92/104 |
| Transformer | Translate | Torch | 222/0 |
| Greedy Decoder Transformer | Translate | Torch | 246/0 |
| BERT | how to train | Torch | 242/0 |
## Dependencies
- Python 3.5+
- Tensorflow 1.12.0+
- Pytorch 0.4.1+
- Plan to add Keras Version
## Author
- Tae Hwan Jung(Jeff Jung) @graykode
- Author Email : nlkey2022@gmail.com
- Acknowledgements to [mojitok](http://mojitok.com/) as NLP Research Internship.