# BIQA_Project **Repository Path**: learner_zzl/BIQA_Project ## Basic Information - **Project Name**: BIQA_Project - **Description**: Blind Image Quality Assessment Using A Deep Bilinear Convolutional Neural Network - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-01-30 - **Last Updated**: 2021-03-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README An experimental PyTorch implementation of DB-CNN is released at https://github.com/zwx8981/DBCNN-PyTorch! Blind Image Quality Assessment Using A Deep Bilinear Convolutional Neural Network = Weixia Zhang, Kede Ma, Jia Yan, Dexiang Deng, and Zhou Wang https://ieeexplore.ieee.org/document/8576582 IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), Volume: 30 , Issue: 1 , Jan. 2020. Files under distorion_generator are used for synthesizing distorted images. - Usuage: distorted_img = distortion_generator( img, dist_type, level, seed ) Where img is the original pristine image, dist_type refers to a specified distortion type ranging in 1~9. 1, Gaussian Blur \ 2, White Noise \ 3, JPEG Compression \ 4, JPEG2000 Compression \ 5, Contrast Change \ 6, Pink Noise \ 7, Image Color Quantization with Dither \ 8, Over-Exposure \ 9, Under-Exposure level is a specified degradation level range in 1~5. seed should be fixed to be 1. Training codes live in dbcnn folder. - Running the run_exp.m script to train and test on a specifid dataset across 10 random splits. Prerequisite: Matlab(We use 2017a), MatConvNet (We use 1.0-beta25), vlfeat(We use 0.9.2) Pretrained s-cnn model is included in dbcnn\data\models, you should download vgg-16 model from http://www.vlfeat.org/matconvnet/pretrained/ and put it in dbcnn\data\models. You need to copy the matconvet/matlab folder to that of your matconvnet to modify the vl_simplenn.m and PDist.m files. - Relevant links: \ Waterloo Exploration Database: https://ece.uwaterloo.ca/~k29ma/exploration/ \ PASCAL VOC 2012: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ Citation - @article{zhang2020blind, title={Blind Image Quality Assessment Using A Deep Bilinear Convolutional Neural Network}, author={Zhang, Weixia and Ma, Kede and Yan, Jia and Deng, Dexiang and Wang, Zhou}, journal={IEEE Transactions on Circuits and Systems for Video Technology}, volume={30}, number={1}, pages={36--47}, year={2020} }