# Simple-CenterNet **Repository Path**: leizhu_wust/Simple-CenterNet ## Basic Information - **Project Name**: Simple-CenterNet - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-20 - **Last Updated**: 2021-11-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Simple-CenterNet PyTorch Implementation of CenterNet([Object as Points](https://arxiv.org/abs/1904.07850)) - You don't need to bulid some cpp code to use Deformable Convolution used in CenterNet. ## Performance ## On VOC(Training:0712 trainval, Test:07) |Repo| Backbone | 0.5 mAP | Trained model | |:------------:|:-------:|:-------:|:-----------------:| |**This Repo**|ResNet-18| 78.1 | | |[xingyizhou/CenterNet](https://github.com/xingyizhou/CenterNet)|ResNet-18|75.6 | | |[Ximilar-com/xcenternet](https://github.com/Ximilar-com/xcenternet)|ResNet-18 | 70.0 | | |[xuannianz/keras-CenterNet](https://github.com/xuannianz/keras-CenterNet)|**ResNet-50** | 72.9 | | |[bubbliiiing/centernet-keras](https://github.com/bubbliiiing/centernet-keras)|**ResNet-50** | 77.1 | | ## On COCO |Repo| Backbone | mAP | Trained model | |:------------:|:-------:|:-------:|:-----------------:| |**This Repo**|ResNet-18| | | |[xingyizhou/CenterNet](https://github.com/xingyizhou/CenterNet)|ResNet-18| 28.1 | | ## What's difference between paper and this repo? ### VOC #### Paper Refer to `Appendix D: Experiments on PascalVOC` in the paper - Learning rate scheduler: MultiStepLR(milestones=[45, 60], gamma=0.1) - Augmentation: HorizontalFlip, RandomScale, RandomTranslation, RandomCrop, and Color Jittering - Kernel size of max pooling: 3 #### This Repo - Learning rate scheduler: CosineDecay(per iteration) - Augmentation: HorizontalFlip, RandomScale, RandomTranslation, RandomCrop, **Mosaic**, **Mixup(with Mosaic + 1.0 AP)**, and Color Jittering - Kernel size of max pooling: 7 - Gaussian Kernel Generation Method: followed the method proposed in [Training-Time-Friendly Network for Real-Time Object Detection ](https://arxiv.org/abs/1909.00700)(It’s not carefully selected. I just think that it is more reasonable than original one.) ### COCO17 #### Paper #### This Repo ## Setup ``` git clone https://github.com/developer0hye/Simple-CenterNet cd Simple-CenterNet ``` if (your_os == 'Window'): ``` scripts/download-voc0712.bat scripts/download-coco17.bat ``` else: ``` scripts/download-voc0712.sh scripts/download-coco17.sh ``` ## Training ### VOC07+12 ``` python train.py --data ./data/voc0712.yaml --step-batch-size 32 --forward-batch-size 32 --total-epoch 70 ``` If your gpu memory is too lower to train the model, you should try to reduce forward-batch-size. ### COCO17 ## Evaluation ### VOC07+12 ``` python eval.py --data ./data/voc0712.yaml --weights your_model.pth --flip ``` ### COCO17 ## Things we tried that didn't work - Random Rotation Augmentation