# keras-activations
**Repository Path**: lightwind002/keras-activations
## Basic Information
- **Project Name**: keras-activations
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2018-11-11
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Keras Activations
```
pip install keract
```
*You have just found a (easy) way to get the activations for each layer of your Keras model (LSTM, conv nets...).*
## API
```python
from keract import get_activations
get_activations(model, x)
```
### Inputs
- `model` is a `keras.models.Model` object
- `x` is a numpy array to feed to the model as input. In the case of multi-input, `x` is of type List. We use the Keras convention (as used in predict, fit...).
### Output
- A dictionary containing the activations for each layer of `model` for the input `x`:
```
{
'conv2d_1/Relu:0': np.array(...),
'conv2d_2/Relu:0': np.array(...),
...,
'dense_2/Softmax:0': np.array(...)
}
```
The key is the name of the layer and the value is the corresponding output of the layer for the given input `x`.
## Examples
Examples are provided for:
- `keras.models.Sequential` - mnist.py
- `keras.models.Model` - multi_inputs.py
- Recurrent networks - recurrent.py
In the case of MNIST with LeNet, we are able to fetch the activations for a batch of size 128:
```
conv2d_1/Relu:0
(128, 26, 26, 32)
conv2d_2/Relu:0
(128, 24, 24, 64)
max_pooling2d_1/MaxPool:0
(128, 12, 12, 64)
dropout_1/cond/Merge:0
(128, 12, 12, 64)
flatten_1/Reshape:0
(128, 9216)
dense_1/Relu:0
(128, 128)
dropout_2/cond/Merge:0
(128, 128)
dense_2/Softmax:0
(128, 10)
```
We can even visualise some of them.
A random seven from MNIST
Activation map of CONV1 of LeNet
Activation map of FC1 of LeNet
Activation map of Softmax of LeNet. Yes it's a seven!
### Repo views (since 2018/10/31)
[](http://hits.dwyl.io/philipperemy/keras-activations)