代码拉取完成,页面将自动刷新
同步操作将从 src-openEuler/pytorch 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
From 767f6aa49fe20a2766b9843d01e3b7f7793df6a3 Mon Sep 17 00:00:00 2001
From: Nikita Shulga <nshulga@meta.com>
Date: Thu, 17 Nov 2022 22:05:27 +0000
Subject: [PATCH] [JIT][Security] Do not blindly eval input string (#89189)
Introduce `_eval_no_call` method, that evaluates statement only if it
does not contain any calls(done by examining the bytecode), thus preventing command injection exploit
Added simple unit test to check for that
`torch.jit.annotations.get_signature` would not result in calling random
code.
Although, this code path exists for Python-2 compatibility, and perhaps
should be simply removed.
Fixes https://github.com/pytorch/pytorch/issues/88868
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89189
Approved by: https://github.com/suo
---
test/test_jit.py | 8 ++++++++
torch/csrc/jit/frontend/script_type_parser.cpp | 2 +-
torch/jit/annotations.py | 14 ++++++++++++--
3 files changed, 21 insertions(+), 3 deletions(-)
diff --git a/test/test_jit.py b/test/test_jit.py
index 13c27b0efa..6cbc091d50 100644
--- a/test/test_jit.py
+++ b/test/test_jit.py
@@ -3951,6 +3951,14 @@ def foo(x):
return a + 2
torch.jit.script(invalid4)
+ def test_calls_in_type_annotations(self):
+ with self.assertRaisesRegex(RuntimeError, "Type annotation should not contain calls"):
+ def spooky(a):
+ # type: print("Hello") -> Tensor # noqa: F723
+ return a + 2
+ print(torch.__file__)
+ torch.jit.annotations.get_signature(spooky, None, 1, True)
+
def test_is_optional(self):
ann = Union[List[int], List[float]]
torch._jit_internal.is_optional(ann)
diff --git a/torch/csrc/jit/frontend/script_type_parser.cpp b/torch/csrc/jit/frontend/script_type_parser.cpp
index f5d6f640d4..d05ec95fb9 100644
--- a/torch/csrc/jit/frontend/script_type_parser.cpp
+++ b/torch/csrc/jit/frontend/script_type_parser.cpp
@@ -316,7 +316,7 @@ std::vector<IValue> ScriptTypeParser::evaluateDefaults(
// We then run constant prop on this graph and check the results are
// constant. This approach avoids having to have separate handling of
// default arguments from standard expressions by piecing together existing
- // machinery for graph generation, constant propgation, and constant
+ // machinery for graph generation, constant propagation, and constant
// extraction.
auto tuple_type = Subscript::create(
r,
diff --git a/torch/jit/annotations.py b/torch/jit/annotations.py
index a4a36ce36a..a6ff2d04d2 100644
--- a/torch/jit/annotations.py
+++ b/torch/jit/annotations.py
@@ -1,4 +1,5 @@
import ast
+import dis
import enum
import inspect
import re
@@ -144,6 +145,15 @@ def check_fn(fn, loc):
raise torch.jit.frontend.FrontendError(loc, "Expected a single top-level function")
+def _eval_no_call(stmt, glob, loc):
+ """Evaluate statement as long as it does not contain any method/function calls"""
+ bytecode = compile(stmt, "", mode="eval")
+ for insn in dis.get_instructions(bytecode):
+ if "CALL" in insn.opname:
+ raise RuntimeError(f"Type annotation should not contain calls, but '{stmt}' does")
+ return eval(bytecode, glob, loc) # type: ignore[arg-type] # noqa: P204
+
+
def parse_type_line(type_line, rcb, loc):
"""Parses a type annotation specified as a comment.
@@ -154,7 +164,7 @@ def parse_type_line(type_line, rcb, loc):
arg_ann_str, ret_ann_str = split_type_line(type_line)
try:
- arg_ann = eval(arg_ann_str, {}, EvalEnv(rcb)) # type: ignore[arg-type] # noqa: P204
+ arg_ann = _eval_no_call(arg_ann_str, {}, EvalEnv(rcb))
except (NameError, SyntaxError) as e:
raise RuntimeError("Failed to parse the argument list of a type annotation") from e
@@ -162,7 +172,7 @@ def parse_type_line(type_line, rcb, loc):
arg_ann = (arg_ann,)
try:
- ret_ann = eval(ret_ann_str, {}, EvalEnv(rcb)) # type: ignore[arg-type] # noqa: P204
+ ret_ann = _eval_no_call(ret_ann_str, {}, EvalEnv(rcb))
except (NameError, SyntaxError) as e:
raise RuntimeError("Failed to parse the return type of a type annotation") from e
--
2.27.0
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。