# CS229-ML-Implementation **Repository Path**: limbercode/CS229-ML-Implementation ## Basic Information - **Project Name**: CS229-ML-Implementation - **Description**: Implementation of cs229(Machine Learning taught by Andrew Ng) in python. - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-16 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [2019-11-23] Update: Add Conditional Generative Adversarial Nets on MNIST in 01-UnsupervisedLerning

[2019-11-7] Update: Add Generative Adversarial Nets on MNIST in 01-UnsupervisedLerning

[2019-11-5] Update: Add 99.76% accuracy mnist model

# CS229-ML-Implements(CS229机器学习算法的Python实现) Implements of cs229(Machine Learning taught by Andrew Ng) in python. # I must pay all my attention to my papers, therefore the repository won't update soon. # CS229 Machine Learning Xmind: ![](https://github.com/Sierkinhane/CS229-ML-Implements/blob/master/GIF/ml-xmind.png) # CS229 Machine Learning course and notes: [OpenCourse](http://open.163.com/special/opencourse/machinelearning.html) [cs229-Notes](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/CS229-Notes) # Syllabus: * [Linear Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/01-LinearRegression) * [Normal Equation](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/01-LinearRegression) * [Locally Weighted Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/01-LinearRegression) * [Logistic Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/02-Classification) * [Perceptron Algorithm](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/02-Classification) * [Newton Method](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/02-Classification) * [Softmax Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/03-GeneralizedLinearModels) * [Gaussian Discriminant Analysis](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/04-GenerativeLearningAlgorithms) * [Naive Bayes](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/04-GenerativeLearningAlgorithms/naive_bayes) spam-filter # Examples ## [Linear Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/01-LinearRegression) ![](https://github.com/Sierkinhane/CS229-ML-Implements/blob/master/GIF/regression.gif) ## [Locally Weighted Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/01-LinearRegression) ![](https://github.com/Sierkinhane/CS229-ML-Implements/blob/master/GIF/LWR.gif) ## [Logistic Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/02-Classification) ![](https://github.com/Sierkinhane/CS229-ML-Implements/blob/master/GIF/logisticR.gif) ## [Softmax Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/03-GeneralizedLinearModels) ![](https://github.com/Sierkinhane/CS229-ML-Implements/blob/master/GIF/softmaxR.gif) ## [Gaussian Discriminant Analysis](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/04-GenerativeLearningAlgorithms) ![](https://github.com/Sierkinhane/CS229-ML-Implements/blob/master/GIF/GDA.png) ![](https://github.com/Sierkinhane/CS229-ML-Implements/blob/master/GIF/GDA2.png) ## [Naive Bayes](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/04-GenerativeLearningAlgorithms/naive_bayes) spam-filter ## TO BE CONTINUED