# CS229-ML-Implementation
**Repository Path**: limbercode/CS229-ML-Implementation
## Basic Information
- **Project Name**: CS229-ML-Implementation
- **Description**: Implementation of cs229(Machine Learning taught by Andrew Ng) in python.
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-08-16
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
[2019-11-23] Update: Add Conditional Generative Adversarial Nets on MNIST in 01-UnsupervisedLerning
[2019-11-7] Update: Add Generative Adversarial Nets on MNIST in 01-UnsupervisedLerning
[2019-11-5] Update: Add 99.76% accuracy mnist model
# CS229-ML-Implements(CS229机器学习算法的Python实现)
Implements of cs229(Machine Learning taught by Andrew Ng) in python.
# I must pay all my attention to my papers, therefore the repository won't update soon.
# CS229 Machine Learning Xmind:

# CS229 Machine Learning course and notes:
[OpenCourse](http://open.163.com/special/opencourse/machinelearning.html)
[cs229-Notes](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/CS229-Notes)
# Syllabus:
* [Linear Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/01-LinearRegression)
* [Normal Equation](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/01-LinearRegression)
* [Locally Weighted Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/01-LinearRegression)
* [Logistic Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/02-Classification)
* [Perceptron Algorithm](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/02-Classification)
* [Newton Method](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/02-Classification)
* [Softmax Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/03-GeneralizedLinearModels)
* [Gaussian Discriminant Analysis](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/04-GenerativeLearningAlgorithms)
* [Naive Bayes](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/04-GenerativeLearningAlgorithms/naive_bayes) spam-filter
# Examples
## [Linear Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/01-LinearRegression)

## [Locally Weighted Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/01-LinearRegression)

## [Logistic Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/02-Classification)

## [Softmax Regression](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/03-GeneralizedLinearModels)

## [Gaussian Discriminant Analysis](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/04-GenerativeLearningAlgorithms)


## [Naive Bayes](https://github.com/Sierkinhane/CS229-ML-Implements/tree/master/00-SupervisedLearning/04-GenerativeLearningAlgorithms/naive_bayes) spam-filter
## TO BE CONTINUED