代码拉取完成,页面将自动刷新
同步操作将从 Ascend/MindSpeed-MM 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import mindspeed.megatron_adaptor # noqa
import torch
from megatron.training import get_args
from megatron.training.checkpointing import load_checkpoint
from megatron.training.initialize import initialize_megatron
from mindspeed_mm import PatchesManager
from mindspeed_mm import Tokenizer
from mindspeed_mm.arguments import extra_args_provider_decorator
from mindspeed_mm.configs.config import merge_mm_args
from mindspeed_mm.configs.config import mm_extra_args_provider
from mindspeed_mm.models.ae import AEModel
from mindspeed_mm.models.diffusion import DiffusionModel
from mindspeed_mm.models.predictor import PredictModel
from mindspeed_mm.models.text_encoder import TextEncoder
from mindspeed_mm.tasks.evaluation.eval_datasets import eval_dataset_dict
from mindspeed_mm.tasks.evaluation.eval_impl import eval_impl_dict, eval_pipeline_dict
from mindspeed_mm.utils.utils import get_device, is_npu_available
if is_npu_available():
import torch_npu
from torch_npu.contrib import transfer_to_npu
torch.npu.config.allow_internal_format = False
def init_eval_pipline(args):
ori_args = get_args()
device = get_device(args.device)
vae = AEModel(args.ae).get_model().to(device, args.ae.dtype).eval()
text_encoder = TextEncoder(args.text_encoder).get_model().to(device).eval()
predict_model = PredictModel(args.predictor).get_model()
if ori_args.load is not None:
load_checkpoint([predict_model], None, None, strict=False)
predict_model = predict_model.to(device, args.predictor.dtype).eval()
scheduler = DiffusionModel(args.diffusion).get_model()
tokenizer = Tokenizer(args.tokenizer).get_tokenizer()
if not hasattr(vae, 'dtype'):
vae.dtype = args.ae.dtype
inference_pipeline_class = eval_pipeline_dict[args.eval_config.evaluation_model]
eval_pipeline = inference_pipeline_class(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler,
predict_model=predict_model, config=args.pipeline_config)
return eval_pipeline
def main():
initialize_megatron(extra_args_provider=extra_args_provider_decorator(mm_extra_args_provider), args_defaults={})
PatchesManager.apply_patches_from_config()
args = get_args()
merge_mm_args(args)
args = args.mm.model
# prepare arguments
torch.set_grad_enabled(False)
eval_dataset_class = eval_dataset_dict[args.eval_config.dataset.type]
if args.eval_config.evaluation_impl in eval_impl_dict:
eval_impl_class = eval_impl_dict[args.eval_config.evaluation_impl]
else:
raise NotImplementedError(f"eval impl {args.eval_config.evaluation_impl} not found")
inference_pipeline = init_eval_pipline(args)
eval_dataset = eval_dataset_class(args.eval_config.dataset.basic_param.to_dict(),
args.eval_config.dataset.extra_param.to_dict(),
args.eval_config.dimensions)
eval_impl = eval_impl_class(dataset=eval_dataset, inference_pipeline=inference_pipeline, args=args)
eval_impl()
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。