# Volumetric-Segmentation **Repository Path**: liu-qi/Volumetric-Segmentation ## Basic Information - **Project Name**: Volumetric-Segmentation - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-12-26 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Source: https://github.com/ellisdg/3DUnetCNN, https://arxiv.org/abs/1606.06650 Designed a Keras model for 3D segmentation of volumetric data for detecting modalities in brain tumor https://www.med.upenn.edu/sbia/brats2018/registration.html Assumption: Brats dataset is preprocessed and saved as data/preprocessed original Steps: - Create conda environment from env.yaml - Cd VolumetricSegmentationGitlab - Run python train_val_split.py: Creates data file (brats_data.h5) and splits data into training and validation ids (training_ids.pkl, validation_ids.pkl) - Run python train_v1.ipynb or train_v2.ipynb: Creates tumor_model.h5 in model, and segmentation predictions in predictions folder for validation ids in validation_ids.pkl