# SSDM **Repository Path**: liuhll2/SSDM ## Basic Information - **Project Name**: SSDM - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-11 - **Last Updated**: 2021-04-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README SSDM: Stacked species distribution modelling ================ [![Travis-CI Build Status](https://travis-ci.org/sylvainschmitt/SSDM.svg?branch=master)](https://travis-ci.org/sylvainschmitt/SSDM)[![CRAN](https://www.r-pkg.org/badges/version/SSDM)](https://CRAN.R-project.org/package=SSDM) [![Downloads](http://cranlogs.r-pkg.org/badges/SSDM?color=brightgreen)](http://www.r-pkg.org/pkg/SSDM) [![Coverage Status](https://img.shields.io/codecov/c/github/sylvainschmitt/SSDM/master.svg)](https://codecov.io/github/sylvainschmitt/SSDM?branch=master) [![Research software impact](http://depsy.org/api/package/cran/SSDM/badge.svg)](http://depsy.org/package/r/SSDM) [![Gitter](https://badges.gitter.im/S-SDM/community.svg)](https://gitter.im/S-SDM/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge) SSDM is a package to map species richness and endemism based on stacked species distribution models (SSDM). Individual SDMs can be created using a single or multiple algorithms (ensemble SDMs). For each species, an SDM can yield a habitat suitability map, a binary map, a between-algorithm variance map, and can assess variable importance, algorithm accuracy, and between-algorithm correlation. Methods to stack individual SDMs include summing individual probabilities and thresholding then summing. Thresholding can be based on a specific evaluation metric or by drawing repeatedly from a Bernouilli distribution. The SSDM package also provides a user-friendly interface `gui`. For a full list of changes see [`NEWS`](./NEWS.md). Installation ============ Please be aware that SSDM package use a lot of dependencies (see [`DESCRIPTION`](./DESCRIPTION)) ### Install from Github You can install the latest version of **SSDM** from Github using the [`devtools`](https://github.com/hadley/devtools) package: ``` r if (!requireNamespace("devtools", quietly = TRUE)) install.packages("devtools") devtools::install_github("sylvainschmitt/SSDM") ``` ### Install from CRAN The stable version of **SSDM**, is available on CRAN: ``` r install.packages("SSDM") ``` *We advise users to install from github. Due to CRAN policies and the development of SSDM, many new features and bugfixes may be available on CRAN later.* Usage ===== After installing, **SSDM** package, you can launch the graphical user interface by typing gui() in the console. [**Click to enlarge**](https://raw.githubusercontent.com/sylvainschmitt/SSDM/master/examples/SSDM.gif) ![Screenshot](https://raw.githubusercontent.com/sylvainschmitt/SSDM/master/examples/SSDM.gif) Functionnalities ================ SSDM provides five categories of functions (that you can find in details below): Data preparation, Modelling main functions, Model main methods, Model classes, and Miscellaneous. ### Data preparation - `load_occ`: Load occurrence data - `load_var`: Load environmental variables ### Modelling main functions - `modelling`: Build an SDM using a single algorithm - `ensemble_modelling`: Build an SDM that assembles multiple algorithms - `stack_modelling`: Build an SSDMs that assembles multiple algorithms and species ### Model main methods - `ensemble,Algorithm.SDM-method`: Build an ensemble SDM - `stacking,Ensemble.SDM-method`: Build an SSDM - `update,Stacked.SDM-method`: Update a previous SSDM with new occurrence data ### Model classes - `Algorithm.SDM`: S4 class to represent SDMs - `Ensemble.SDM`: S4 class to represent ensemble SDMs - `Stacked.SDM`: S4 class to represent SSDMs ### Miscellanous - `gui`: user-friendly interface for SSDM package - `plot.model`: Plot SDMs - `save.model`: Save SDMs - `load.model`: Load SDMs