# ECO-HC_UAV **Repository Path**: lsjr/ECO-HC_UAV ## Basic Information - **Project Name**: ECO-HC_UAV - **Description**: Efficient Convolution Operators based target tracking on UAV - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-18 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ECO-HC on UAV ECO with hand-crafted features on UAV ## Build demo ```bash cd ECO-HC_UAV/eco/features/ python setup.py build_ext --inplace ``` ## Usage To run our demo on Airsim, install the requirements below ```bash pip install numpy pandas scipy python-opencv pillow airsim ``` Then install [Unreal Engine 4](https://www.unrealengine.com/download) to run the simulation environment Build an environment by youself or download from [released environments](https://github.com/microsoft/AirSim/releases) Run the environment and choose no to use quadrotor simulation Now you can run the demo and draw a box on target to start tracing ```bash cd ECO-HC_UAV/ python demo_airsim.py ``` See [docs](https://github.com/microsoft/AirSim/tree/master/docs) and [PythonClient](https://github.com/microsoft/AirSim/tree/master/PythonClient) to learn more about Airsim's API ## Note Python implementation of ECO by [pyECO](https://github.com/StrangerZhang/pyECO), using ResNet50 feature instead of the original imagenet-vgg-m-2048 Our demo only use ECO-HC for efficiency ## Reference [1] Danelljan, Martin and Bhat, Goutam and Shahbaz Khan, Fahad and Felsberg, Michael. ​ ECO: Efficient Convolution Operators for Tracking ​ In Conference on Computer Vision and Pattern Recognition (CVPR), 2017