# bitsandbytes **Repository Path**: luo_zhi_cheng/bitsandbytes ## Basic Information - **Project Name**: bitsandbytes - **Description**: bitsandbytes - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-02-26 - **Last Updated**: 2025-03-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # `bitsandbytes` [![Downloads](https://static.pepy.tech/badge/bitsandbytes)](https://pepy.tech/project/bitsandbytes) [![Downloads](https://static.pepy.tech/badge/bitsandbytes/month)](https://pepy.tech/project/bitsandbytes) [![Downloads](https://static.pepy.tech/badge/bitsandbytes/week)](https://pepy.tech/project/bitsandbytes) The `bitsandbytes` library is a lightweight Python wrapper around CUDA custom functions, in particular 8-bit optimizers, matrix multiplication (LLM.int8()), and 8 & 4-bit quantization functions. The library includes quantization primitives for 8-bit & 4-bit operations, through `bitsandbytes.nn.Linear8bitLt` and `bitsandbytes.nn.Linear4bit` and 8-bit optimizers through `bitsandbytes.optim` module. There are ongoing efforts to support further hardware backends, i.e. Intel CPU + GPU, AMD GPU, Apple Silicon, hopefully NPU. **Please head to the official documentation page:** **[https://huggingface.co/docs/bitsandbytes/main](https://huggingface.co/docs/bitsandbytes/main)** ## License `bitsandbytes` is MIT licensed. We thank Fabio Cannizzo for his work on [FastBinarySearch](https://github.com/fabiocannizzo/FastBinarySearch) which we use for CPU quantization.