代码拉取完成,页面将自动刷新
import argparse
import os
import random
import torch
import logging
import numpy as np
from tools.init_tool import init_all
from config_parser import create_config
from tools.train_tool import train
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def seed_torch(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
# torch.backends.cudnn.enabled = False
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--config', '-c', help="specific config file", required=True)
parser.add_argument('--gpu', '-g', help="gpu id list")
parser.add_argument('--data_path', help="data path")
parser.add_argument('--pretrain_path', help='pretrain model path')
parser.add_argument('--checkpoint', help="checkpoint file path")
parser.add_argument(
'--do_test', help="do test while training or not", action="store_true")
args = parser.parse_args()
seed_torch()
configFilePath = args.config
use_gpu = True
gpu_list = []
if args.gpu is None:
use_gpu = False
else:
use_gpu = True
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
device_list = args.gpu.split(",")
for a in range(0, len(device_list)):
gpu_list.append(int(a))
config = create_config(configFilePath)
if args.data_path is not None:
config.set("data", "train_data_path", args.data_path)
config.set("data", "val_data_path", args.data_path)
config.set("data", "test_data_path", args.data_path)
if args.pretrain_path is not None:
config.set("model", "pretrain_path", args.pretrain_path)
cuda = torch.cuda.is_available()
# logger.info("CUDA available: %s" % str(cuda))
if not cuda and len(gpu_list) > 0:
logger.error("CUDA is not available but specific gpu id")
raise NotImplementedError
parameters = init_all(config, gpu_list, args.checkpoint, "train")
do_test = False
if args.do_test:
do_test = True
train(parameters, config, gpu_list, do_test)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。