# practicalAI **Repository Path**: lwanqiang/practicalAI ## Basic Information - **Project Name**: practicalAI - **Description**: 📚 A practical approach to machine learning. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-07 - **Last Updated**: 2021-09-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
A practical approach to machine learning. Created by Goku Mohandas and contributors
## Notebooks

Basic ML

Basics Machine Learning Tools Deep Learning
📓 Notebooks 📈 Linear Regression 🔎 Data & Models ️🖼 Convolutional Neural Networks
🐍 Python 📊 Logistic Regression 🛠 Utilities 👑 Embeddings
🔢 NumPy ️🎛 Multilayer Perceptrons ️✂️ Preprocessing 📗 Recurrent Neural Networks
🐼 Pandas

Production ML

Local Applications Scale Miscellaneous
💻 Local Setup 🌲 Logging 🐳 Docker 🤝 Distributed Training
🐍 ML Scripts ⚱️ Flask Applications 🚢 Kubernetes 🔋 Databases
✅ Unit Tests 🌊 Kubeflow 🔐 Authentication

Advanced ML

General Sequential Popular Miscellaneous
🧐 Attention 🐝 Transformers 🎭 Generative Adversarial Networks 🔮 Autoencoders
🏎️ Highway Networks 👹 BERT, GPT2, XLNet 🎱 Bayesian Deep Learning 🕷️ Graph Neural Networks
💧 Residual Networks 🕘 Temporal CNNs 🍒 Reinforcement Learning

Topics

Computer Vision Natural Language Unsupervised Learning Miscellaneous
📸 Image Recognition 📖 Text classification 🍡 Clustering ⏰ Time-series Analysis
🖼️ Image Segmentation 💬 Named Entity Recognition 🏘️ Topic Modeling 🛒 Recommendation Systems
🎨 Image Generation 🧠 Knowledge Graphs 🎯 One-shot Learning
🗃️ Interpretability

## Updates 📬 Newsletter - Subscribe to get updates on new content.