# Polars-Cookbook
**Repository Path**: lxq9031/Polars-Cookbook
## Basic Information
- **Project Name**: Polars-Cookbook
- **Description**: No description available
- **Primary Language**: Rust
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-08-11
- **Last Updated**: 2025-08-11
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README

## Machine Learning Summit 2025
**Bridging Theory and Practice: ML Solutions for Today’s Challenges**
3 days, 20+ experts, and 25+ tech sessions and talks covering critical aspects of:
- **Agentic and Generative AI**
- **Applied Machine Learning in the Real World**
- **ML Engineering and Optimization**
👉 [Book your ticket now >>](https://packt.link/mlsumgh)
---
## Join Our Newsletters 📬
### DataPro
*The future of AI is unfolding. Don’t fall behind.*

Stay ahead with [**DataPro**](https://landing.packtpub.com/subscribe-datapronewsletter/?link_from_packtlink=yes), the free weekly newsletter for data scientists, AI/ML researchers, and data engineers.
From trending tools like **PyTorch**, **scikit-learn**, **XGBoost**, and **BentoML** to hands-on insights on **database optimization** and real-world **ML workflows**, you’ll get what matters, fast.
> Stay sharp with [DataPro](https://landing.packtpub.com/subscribe-datapronewsletter/?link_from_packtlink=yes). Join **115K+ data professionals** who never miss a beat.
---
### BIPro
*Business runs on data. Make sure yours tells the right story.*

[**BIPro**](https://landing.packtpub.com/subscribe-bipro-newsletter/?link_from_packtlink=yes) is your free weekly newsletter for BI professionals, analysts, and data leaders.
Get practical tips on **dashboarding**, **data visualization**, and **analytics strategy** with tools like **Power BI**, **Tableau**, **Looker**, **SQL**, and **dbt**.
> Get smarter with [BIPro](https://landing.packtpub.com/subscribe-bipro-newsletter/?link_from_packtlink=yes). Trusted by **35K+ BI professionals**, see what you’re missing.
# Polars-Cookbook
B21621 - Polars Cookbook - [Available as an ebook and a physical copy on Amazon](https://www.amazon.com/Polars-Cookbook-practical-transform-manipulate/dp/1805121154)
## [Chapter 1: Getting Started with Python Polars](https://github.com/PacktPublishing/Polars-Cookbook/blob/main/Chapter01/ch01.ipynb)
- Introducing Key Features in Polars
- The Polars DataFrame
- The Polars Series
- The Polars LazyFrame
- Selecting columns and filtering data
- Creating, modifying, and deleting columns
- Understanding method chaining
- Processing datasets larger than RAM
## [Chapter 2: Reading and Writing Files](https://github.com/PacktPublishing/Polars-Cookbook/blob/main/Chapter02/ch02.ipynb)
- Reading and writing CSV files
- Reading and writing parquet files
- Reading and writing delta tables
- Reading and writing JSON files
- Reading and writing excel files
- Reading and writing other data file formats
- Reading and writing multiple files
- Working with databases
## [Chapter 3: An Introduction to Data Analysis in Python Polars](https://github.com/PacktPublishing/Polars-Cookbook/blob/main/Chapter03/ch03.ipynb)
- Inspecting the DataFrame
- Casting data types
- Handling duplicate values
- Masking sensitive data
- Visualizing data using Plotly
- Detecting and handling outliers
## [Chapter 4: Data Transformation Techniques](https://github.com/PacktPublishing/Polars-Cookbook/blob/main/Chapter04/ch04.ipynb)
- Exploring basic aggregations
- Using group by aggregations
- Aggregating values across multiple columns
- Computing with window functions
- Applying UDFs
- Using SQL for data transformations
## [Chapter 5: Handling Missing Data](https://github.com/PacktPublishing/Polars-Cookbook/blob/main/Chapter05/ch05.ipynb)
- Identifying missing data
- Deleting rows and columns containing missing data
- Filling missing data
## [Chapter 6: Performing String Manipulations](https://github.com/PacktPublishing/Polars-Cookbook/blob/main/Chapter06/ch06.ipynb)
- Filtering strings
- Converting strings into a Date/Datetime/Time
- Extracting substrings
- Cleaning strings
- Splitting strings into lists and structs
- Concatenating and combining strings
## [Chapter 7: Working with Nested Data Structures](https://github.com/PacktPublishing/Polars-Cookbook/blob/main/Chapter07/ch07.ipynb)
- Creating lists
- Aggregating elements in lists
- Accessing and selecting elements in lists
- Applying logic to each element in lists
- Working with structs and JSON data
## [Chapter 8: Reshaping and Tidying Data](https://github.com/PacktPublishing/Polars-Cookbook/blob/main/Chapter08/ch08.ipynb)
- Turning columns into rows
- Turning rows into columns
- Joining DataFrames
- Concatenating DataFrames
- Other reshaping techniques
## [Chapter 9: Time Series Analysis](https://github.com/PacktPublishing/Polars-Cookbook/blob/main/Chapter09/ch09.ipynb)
- Working with date and time
- Applying rolling windows calculations
- Resampling techniques
- Time series forecasting with the functime library
## [Chapter 10: Interoperability With Other Python Libraries](https://github.com/PacktPublishing/Polars-Cookbook/blob/main/Chapter10/ch10.ipynb)
- Converting to and from a pandas DataFrame
- Converting to and from NumPy arrays
- Interoperating with PyArrow
- Integration with DuckDB
## [Chapter 11: Working With Common Cloud Sources](https://github.com/PacktPublishing/Polars-Cookbook/blob/main/Chapter11/ch11.ipynb)
- Amazon S3
- Azure Blog Storage
- Google Cloud Storage
- BigQuery
- Snowflake
## [Chapter 12: Testing and Debugging in Polars](https://github.com/PacktPublishing/Polars-Cookbook/blob/main/Chapter12/ch12.ipynb)
- Debugging chained operations
- Inspecting and optimizing the query plan
- Testing data quality with cuallee
- Running unit tests with Pytest
## Errata
* Page 06 (code block 1): **Import polars as pl** _should be_ **import polars as pl**
* Page 23 (code block 2, line 2): **df.select(cs.numeric()).head()** _should be_ **df.select(cs.string()).head()**
## New Outstanding Features and Breaking Changes NOT Captured in the Book
- Version 1.6.0
- Use Altair in DataFrame.plot ([#17995](https://github.com/pola-rs/polars/pull/17995)).